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Side channel attacks 
are one of the most 
efficient ways to attack 
secure hardware
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A side-channel attack 
was used to recover 
the Trezor bitcoin 
wallet private key

https://jochen-hoenicke.de/crypto/trezor-power-analysis/

https://jochen-hoenicke.de/crypto/trezor-power-analysis/
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Side-channels attacks 

and 
are implementation 
specific
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Is there a better and more 
generic way to perform 
side-channels attacks? 

? ?
?
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Deep-learning is posed to 
revolutionize hardware 
side-channel cryptanalysis
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AI? Really?
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Template attack on steroids

No trace
processing

Direct attack 
point targeting

Efficient 
probabilistic attack

Better and intuitive 
success metrics



Security and Privacy Group

Attacks are going 
to be better over 
time as 

1980s  & 1990s 2018+

Pe
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Scale (data, model, computing)

More compute 
& data

Deep 
learning

Other AI 
Algorithms
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How to use deep-learning to recover AES 
keys baked in hardware in practice
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Side 
Channel 
Attacks 
Assisted with 
Machine 
Learning
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Talk is based on some of 
the results of a joint 
research project with 
many collaborators on 
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Code and slides
https://elie.net/scaaml
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Disclaimer
This talk purposely focuses on showcasing how to 
a get SCAAML attack working end-to-end rather 
than discussing state of the art attacks. 
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Agenda

What are side-channels?

What is deep-learning?

Hacker’s guide to 
AES SCAAML attacks

What’s next
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What are 
side-channels?
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A side-channel attack is 
 of a 

 via an
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SCA real-world applications

Extract cryptowallet 
private keys

Steal passwords & 
pins

Perform blind SQL 
injections

Recover 
Encryption keys
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Timing

Electromagnetic 
emission

Heat

Current

Plaintext

Secret Key
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SCA in a nutshell

Encryption AES key!Template 
attack

Signal 
acquisition
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0101
1111
0000

Crypto computation side-effects 
are measurable
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1 2 3 4 65 107 8 9

 AES power trace
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DIY hardware setup from early days 

Probe

Oscilloscope

Communication 
interface

Target chip
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NewAE Chipwhisperer 
is an easy and cheap 
all-in-one entry to 
side-channel attacks
https://newae.com/tools/chipwhisperer/

Recommendation based on usage
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For many chips a higher 
sampling rate is needed 
due to their clock speed 
so you need a faster 
oscilloscope
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CPU clock

Oscilloscope clock

Asynchronous capture used for blackbox attacks like 
SCAAML needs at least 4x the CPU clock speed
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NewAE Chipwhisperer Pro + 
Picoscope 6000 is what we 
use for our SCA research

This is not an ad :) it is a recommendation 
based on what we use



Security and Privacy Group

What is 
deep-learning?
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At its core deep-learning 
is basically a neural  
network with many 
layers
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Neuron

Layer
(width)
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stacked layers
(depth)

Layer
(width)
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hidden layersInput layer
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hidden layers

Dog

Cat

Input layer Output layer
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hidden layers

Dog

Cat

Input layer Output layer
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hidden layers

Dog

Cat

Input layer Output layer
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hidden layers

Dog

Cat

Input layer Output layer
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hidden layers

Dog

Cat

Input layer Output layer
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Input layer hidden layers Output layer

Dog

Cat
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Different use-cases 
use different types of 
layers and network 
architectures

Handwritten digit recognition visualization from 
http://scs.ryerson.ca/~aharley/vis/conv/

http://scs.ryerson.ca/~aharley/vis/conv/
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What do I need to 
train deep learning 
models?
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Tensorflow to 
write and train 
your model

https://www.tensorflow.org/

https://www.tensorflow.org/
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You need a hardware 
accelerator (GPU or 
TPU) as training on CPU 
is impossibly slow

TPU v2
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Demo code is available 
on Colab: a hosted 
Python notebook with 
Tensorflow and free 
GPU/TPU time
https://colab.research.google.com/

https://colab.research.google.com/
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Hacker guide to 
SCAAML attacks
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Performing a 
SCAAML attack 
step by step
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Goal: train a model that 
can recover the AES keys 
from the STM32F415 
TinyAES implementation 
using as few power traces 
as possible
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SCAAML 

Encryption Predictions
using DNN

Combine DNN 
predictions AES key!Signal acquisition

(cw + pico)
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Dataset is composed of 
50000 raw power traces 
with 80000 points per trace, 
without any processing or 
cutting, that were connected 
asynchronously

Sample trace from the TinyAES dataset used in this talk
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What model 
architecture to use?



Security and Privacy Group

We are going to use a 
convolutional network 
architecture

https://de.wikipedia.org/wiki/Convolutional_Neural_Network

https://de.wikipedia.org/wiki/Convolutional_Neural_Network


Security and Privacy Group

Input

Convolutions

dropout_rate = 0.3
filters = 32
kernel_size = 5
num_convolutions = 5
pool_size = 4

inputs = layers.Input(shape=(trace_size, 1))   
x = inputs

x = layers.MaxPooling1D(pool_size)(x)

for _ in range(num_convolutions):
    x = layers.SeparableConv1D(filters, kernel_size)(x)
    x = layers.BatchNormalization()(x)
    x = layers.Activation('relu')(x)
    filters *= 2

x = layers.GlobalMaxPool1D()(x)

x = layers.Dropout(dropout_rate)(x) # better with it
x = layers.Dense(256, activation='relu')(x)
x = layers.BatchNormalization()(x)  # helps
x = layers.Dropout(dropout_rate)(x)

outputs = layers.Dense(256, activation='softmax')(x)

Pooling

Pooling

Denses

softmax

Constants
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What the model 
should predict?
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AES
attack points
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Target any of the 

 as they are 

AP 1
key

AP 2
subbytes_in

AP 3
sub_bytes_out

 key PT

SBOX
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predict a single byte at the time
256 predictions per model: one for each attack point potential value 

Val 0

Val 1
Val 2

Val 42

Val 254
Val 255

...

...

Power trace Predictions
(softmax) DNN
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Learning crypto is 
hard ... most 
models won’t 
converge
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How do I find a 
model that work?
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SCAAML models are hard to find by hand so instead 
it is best to use hyper-tuning to find the right 
model automatically
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Trained 1000+ to find 
the right one using 

 and 
 on 



Security and Privacy Group

Hypertuning found very 
effective models however 
none of them are simple
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Input

Convolutions with 
skip-connection

Pooling

Pooling

Denses
softmax

Residual blocks

Pooling

x = inputs

x = layers.MaxPooling1D(pool_size)(x)  # helps

x = layers.Conv1D(16, kernel_size, strides=strides, padding='same', 
activation='relu')(x)
x = layers.BatchNormalization()(x)

x = layers.Conv1D(filters, kernel_size, strides=strides, padding='same', 
activation='relu')(x)
x = layers.BatchNormalization()(x)

for idx in range(num_convolutions):
    filters *= 2
    residual = layers.Conv1D(filters, 1, strides=strides, padding='same')(x)
    x = layers.SeparableConv1D(filters, kernel_size, padding='same')(x)
    x = layers.BatchNormalization()(x)
    x = layers.Activation('relu')(x)
    x = layers.Conv1D(filters, kernel_size, padding='same')(x)
    x = layers.BatchNormalization()(x)
    x = layers.Activation('relu')(x)
    x = layers.MaxPooling1D(kernel_size, strides=strides, padding='same')(x)
    x = layers.add([x, residual], name='sortcut_%s' % (idx))

for idx in range(nun_residuals):
    residual = x
    x = layers.Conv1D(filters, kernel_size, padding='same')(x)
    x = layers.BatchNormalization()(x)
    x = layers.Activation('relu')(x)
    x = layers.Conv1D(filters, kernel_size, padding='same')(x)
    x = layers.BatchNormalization()(x)
    x = layers.Activation('relu')(x)
    x = layers.Conv1D(filters, kernel_size, padding='same')(x)
    x = layers.BatchNormalization()(x)
    x = layers.Activation('relu')(x)
    x = layers.add([x, residual], name='residual_%s' % (idx))

x = layers.GlobalMaxPool1D()(x)

x = layers.Dense(256, activation='relu')(x)
x = layers.BatchNormalization()(x)  # helps
outputs = layers.Dense(256, activation='softmax')(x)

Convolutions
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our model reached 34.94% validation accuracy 
before collapsing



Security and Privacy Group

Data augmentation 
can help but if badly 
configured it prevents 
the model from 
converging
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Choosing the right attack point matters to get the best 
performance. The best attack point varies from architecture to 
architecture

AP1: key

AP3: sub_bytes_out AP2: sub_bytes_in
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How do I recover 
the key?



Security and Privacy Group

Leverage all model 
predictions on many 
traces to carry out 
probabilistic attacks
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Probabilistic attack: 

Val 0: 0.10

Val 1: 0.02

Val 2: 0.01

Val 254: 0.02

Val 42: 0.3

Val 255: 0.05

...

...
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Probabilistic attack: 

Val 0: 0.10
Val 1: 0.02
Val 2: 0.01

Val 254: 0.02

Val 42: 0.3

Val 255: 0.05

...

...

Val 0: 0.08
Val 1: 0.04
Val 2: 0.05

Val 254: 0.03

Val 42: 0.12

Val 255: 0.10

...

...
+ … + 

Val 0: 4.4
Val 1: 5.3
Val 2: 3.2

Val 254: 2.9

Val 42: 21.4

Val 255: 4.2

...

...

*sum uses log10 + ε
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Does it work across chips?
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Use to 
create the 

 used to 
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How to evaluate attack 
effectiveness?
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Success metrics

Metric Description Baseline

Top 1 Number of bytes correctly predicted 0.004% (1/256)

Top 5 Number of times correct byte is in top5 0.02% (5/256)

Mean rank Average rank of the correct byte 128

Max rank Maximum rank of the correct byte 256
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Holdout dataset is 
composed of 100 keys 
with 300 power traces 
for each key that use a 
different plaintext
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Success! We recovered 
100% of the keys!
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Results: perfect score!

Metric Baseline Results

Top 1 0.004% (1/256) 100% 

Top 5 0.02% (5/256) 100%

Mean rank 128 0

Max rank 256 0
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Despite having “only a 30% 
accuracy” our model allows 
to recover automatically 
100% of the bytes with at 
most 4 traces (81%  with a 
single trace!) on a 
different chip

Top 1 
prediction is 
always 
correct with 4 
traces
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How about protected 
implementations?
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Hardened implementation 
needs significantly more 
advanced techniques, 
computation and data

power trace

 power trace
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What’s next?
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Testbed key numbers

6 AES
implementation

9M+ power 
traces

330GB 
storage

5000+
models trained
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Hope the initial draft 
of our paper will be 
public in a few weeks 
with our results
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Takeaways

Deep-learning is 
the future of 

hardware SCA

Training model 
for SCA is hard

Automation is 
key to success

It’s just the 
beginning
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SCAAML allow to focus on 
crypto algorithms design and 
analysis by automatically 
leveraging computing and AI 
improvements to assess their 
security
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Keep up with our progress on deep-learning 
side-channel attacks: https://elie.net/scaaml


