Google

A hacker guide to deep-learning based AES side channel attacks

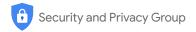
Elie Bursztein Google, @elie

Jean-Michel Picod Google, @jmichel_p

with the help of many Googlers and external collaborators

Side channel attacks are one of the most efficient ways to attack secure hardware

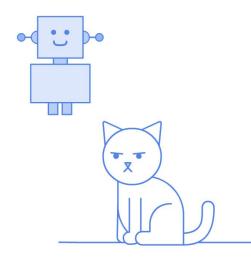
A side-channel attack was used to recover the Trezor bitcoin wallet private key



Side-channels attacks requires a lot of domain expertise and are implementation specific

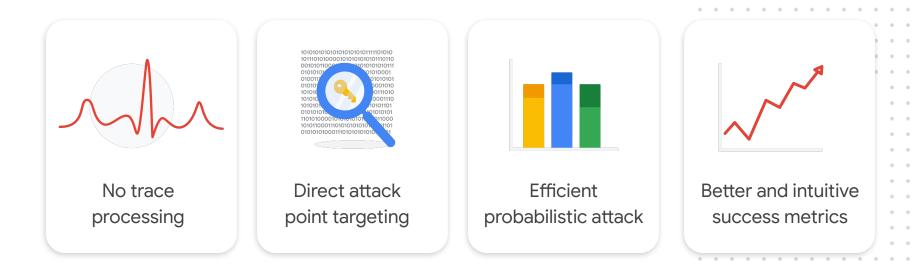
Is there a better and more generic way to perform side-channels attacks?

Deep-learning is posed to revolutionize hardware side-channel cryptanalysis

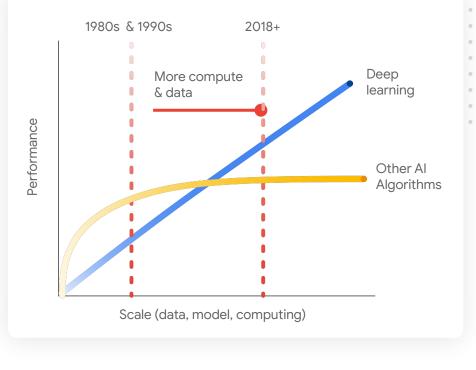


AI? Really?

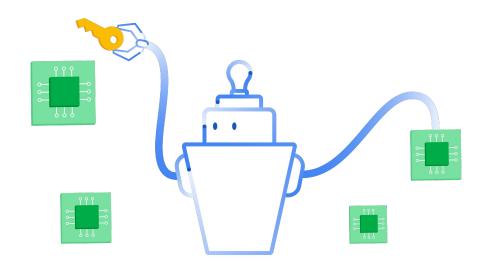
Template attack on steroids



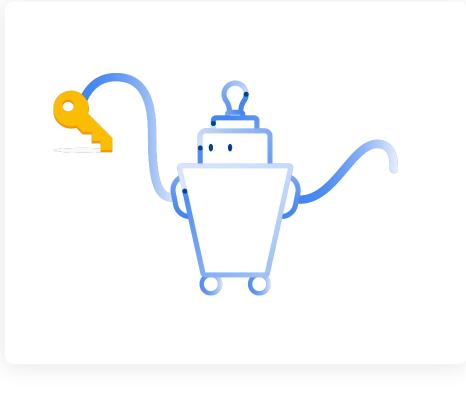
Attacks are going to be better over time as deep learning scales with data and computing



Google



How to use deep-learning to recover AES keys baked in hardware **in practice**



Side Channel Attacks Assisted with Machine Learning

Talk is based on some of the results of a joint research project with many collaborators on hardening hardware cryptography

Code and slides https://elie.net/scaaml

- 0

. .

. .

Disclaimer

This talk purposely focuses on showcasing how to a get SCAAML attack working end-to-end rather than discussing state of the art attacks.

Agenda

•	•	•	•	•				•	•	•			•	
٠	•	•	•	•	•	•	٠	•	٠	•	•	٠	•	
٠		•	•	•	•	•	•	•	•	•	•	•	•	
٠		•	•	•	•	•	•	•	•	•	•	•	•	
٠		•	•	•	•	•	•	•	•	•	•	•	•	
٠		•	•	•	•	•	•	•	•	•	•	•	•	
٠		•	•	•	•	•	•	•	•	•	•	•	•	
٠		•	•	•	•	•	•	•	•	•	•	•	•	
٠		•	•	•	•	•	•	•	•	•	•	•	•	
٠		•	•	•	•	•	•	•	•	•	•	•	•	
٠	•	٠	•	•			•	•	٠	•		٠	•	
•	•	•	•	•				•	•	•			•	
٠		•	•	•	•	•	•	•	•	•	•	•	•	
٠		•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•				•	•	•			•	

What are side-channels?

What is deep-learning?

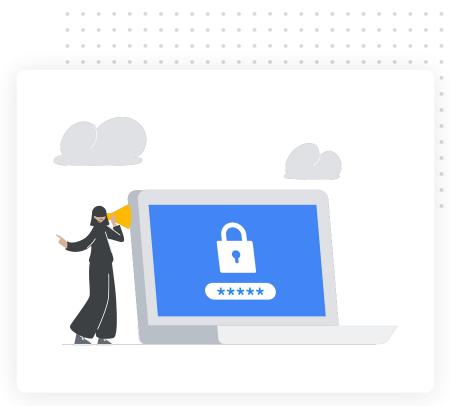
Hacker's guide to AES SCAAML attacks

What's next

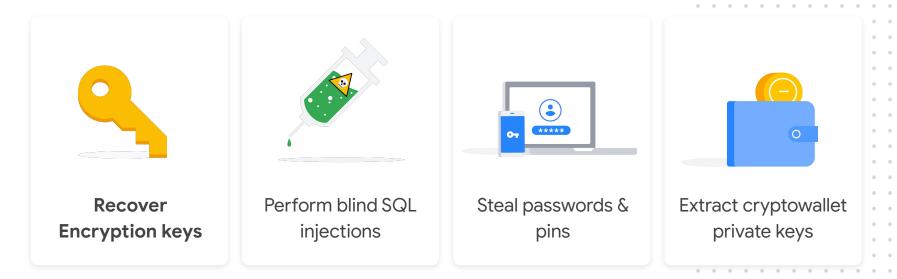
What are side-channels?

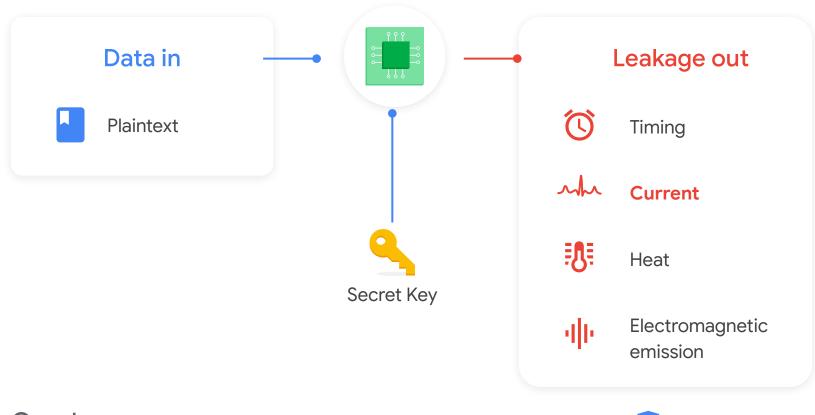


A side-channel attack is an indirect measurement of a computation result via an auxiliary mechanism



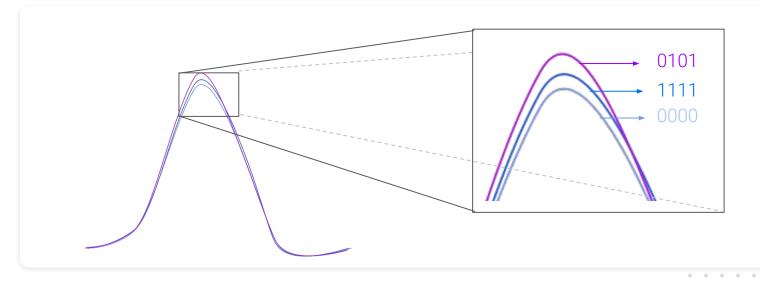
SCA real-world applications



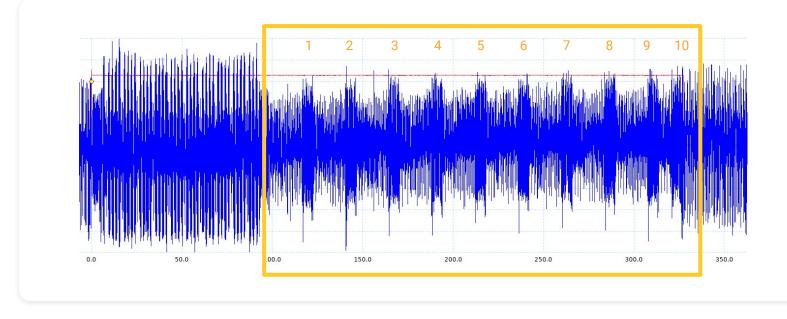


SCA in a nutshell

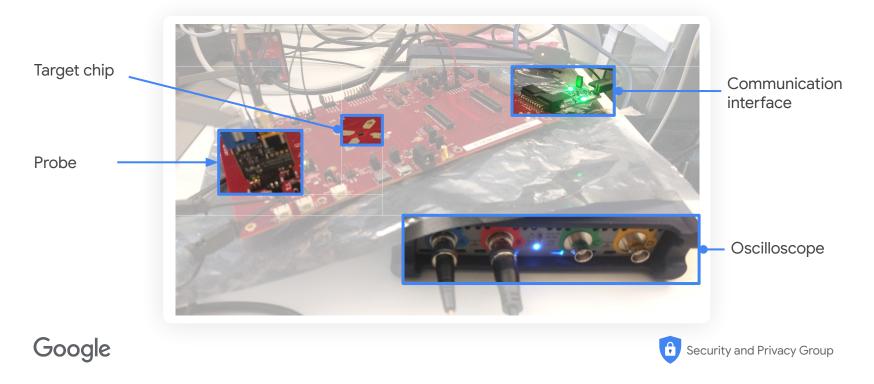
Crypto computation side-effects are measurable



Lightly protected AES power trace



DIY hardware setup from early days

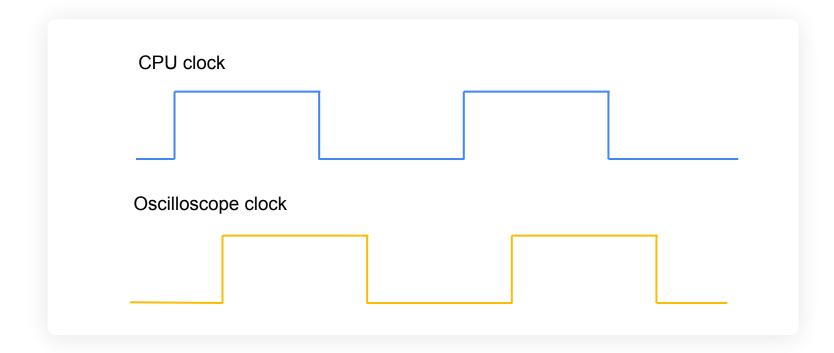


NewAE Chipwhisperer is an easy and cheap all-in-one entry to side-channel attacks

https://newae.com/tools/chipwhisperer/

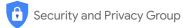
Recommendation based on usage

For many chips a higher sampling rate is needed due to their clock speed so you need a faster oscilloscope



Asynchronous capture used for blackbox attacks like SCAAML needs at least 4x the CPU clock speed

Google

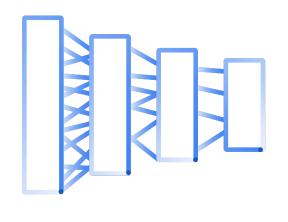


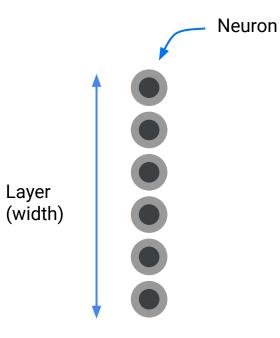
NewAE Chipwhisperer Pro + Picoscope 6000 is what we use for our SCA research

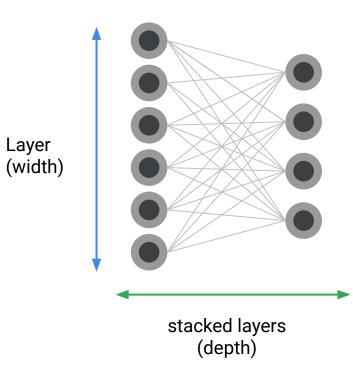
This is not an ad :) it is a recommendation based on what we use

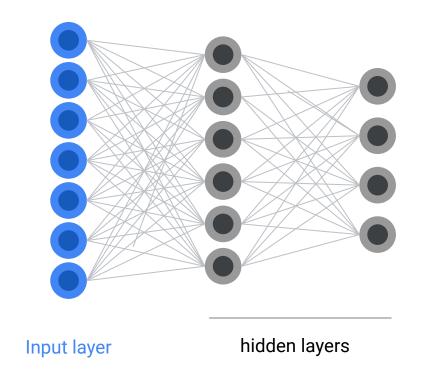
What is deep-learning?

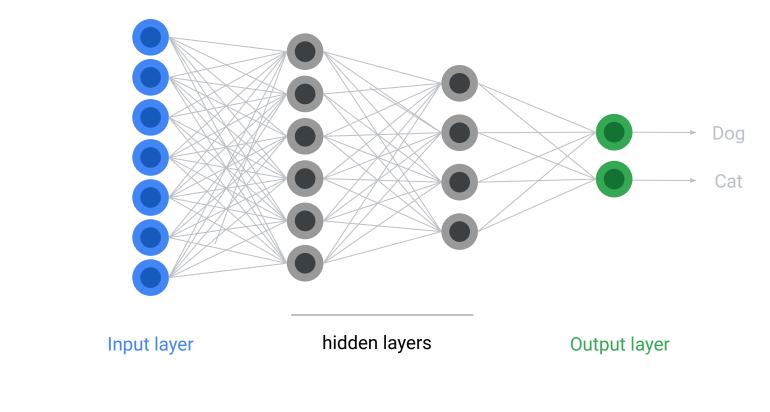
At its core deep-learning is basically a neural network with many layers

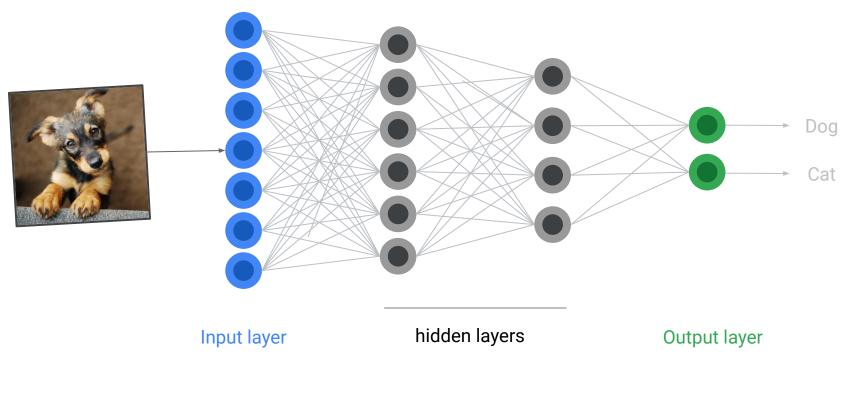


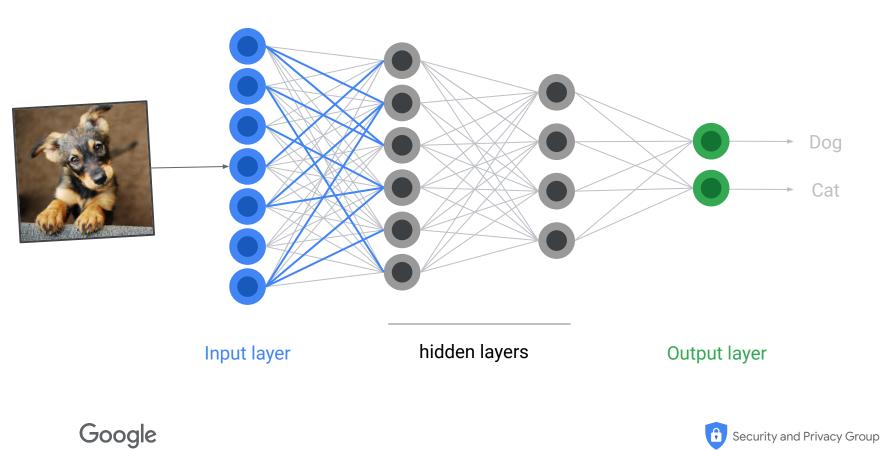


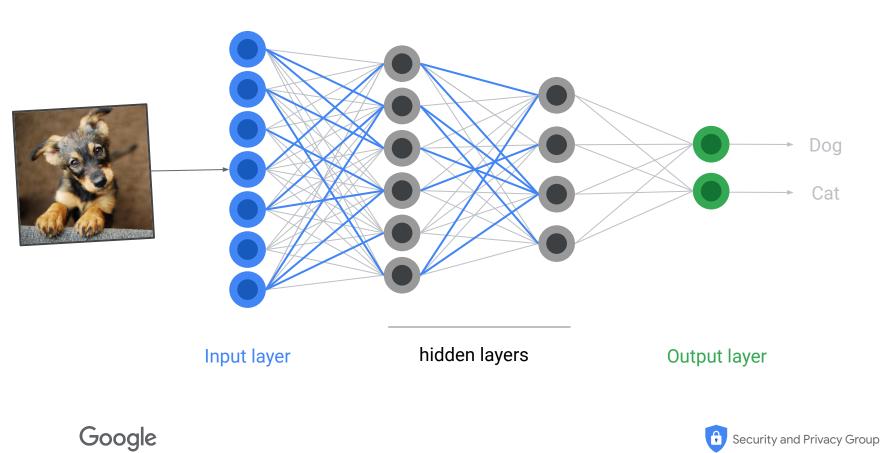


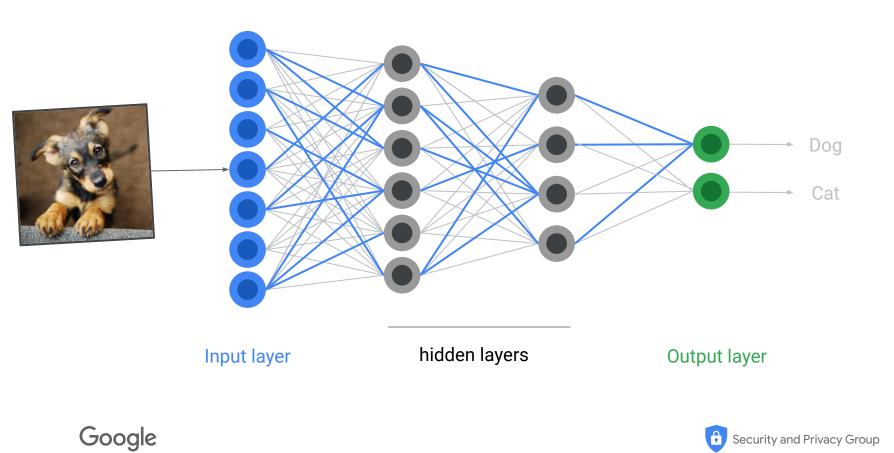


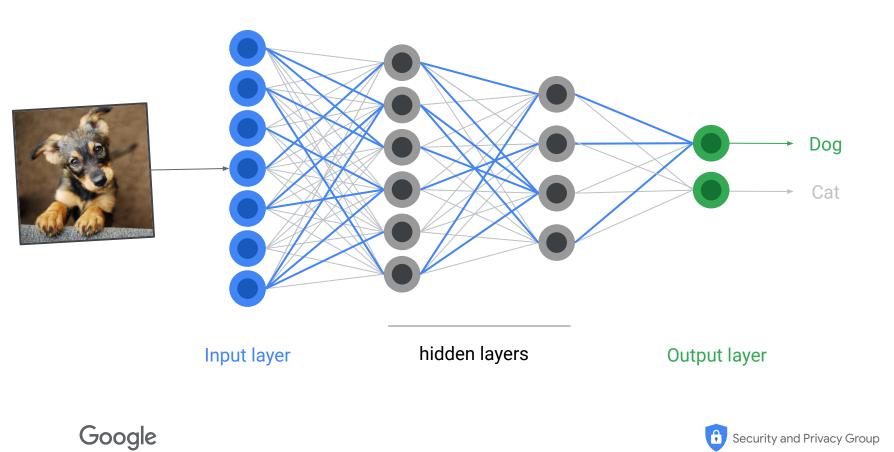




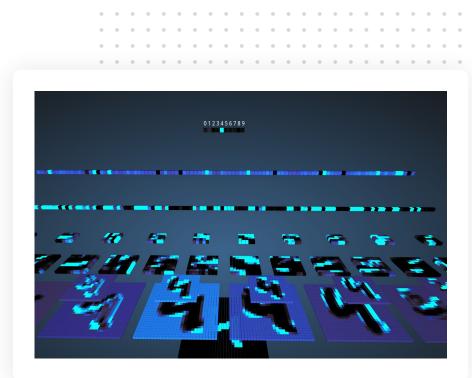








Different use-cases use different types of layers and network architectures

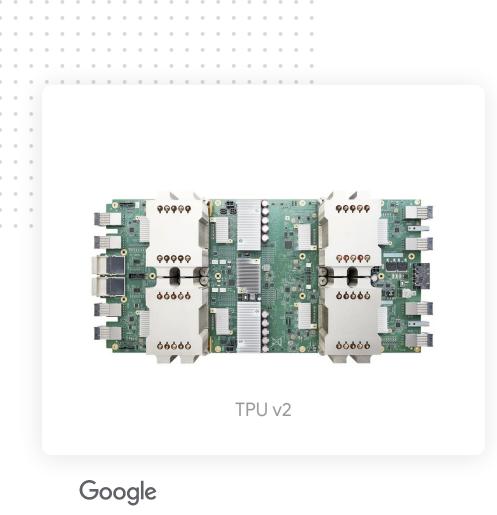


Handwritten digit recognition visualization from http://scs.ryerson.ca/~aharley/vis/conv/

What do I need to train deep learning models?

Tensorflow to write and train your model

https://www.tensorflow.org/



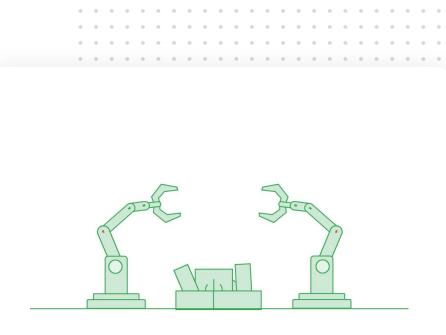
You need a **hardware accelerator (GPU or TPU)** as training on CPU is impossibly slow

Demo code is available on Colab: a hosted Python notebook with Tensorflow and free GPU/TPU time

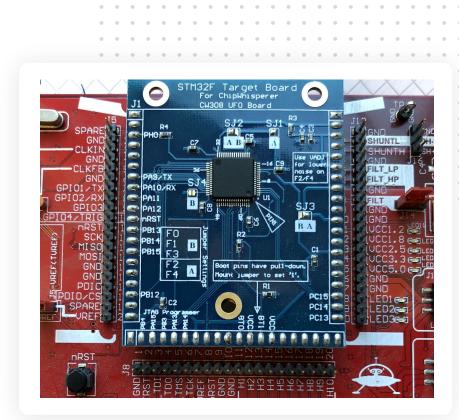
https://colab.research.google.com/

Hacker guide to SCAAML attacks

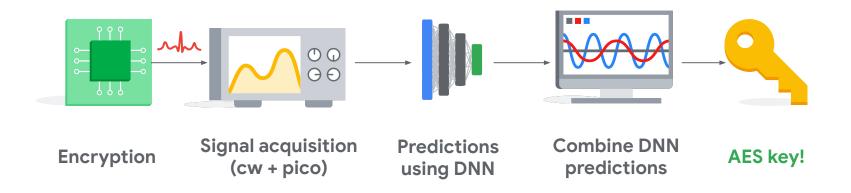
Performing a SCAAML attack **step by step**



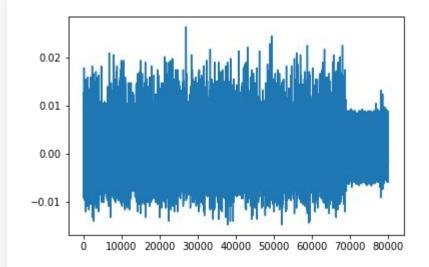
Goal: train a model that can recover the AES keys from the STM32F415 TinyAES implementation using as few power traces as possible



SCAAML game plan



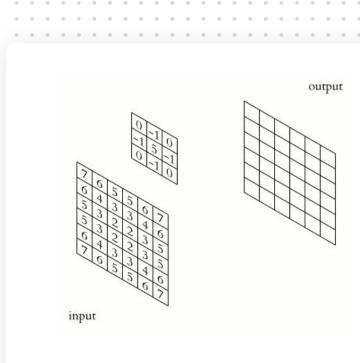
Dataset is composed of 50000 raw power traces with 80000 points per trace, without any processing or cutting, that were connected asynchronously



Sample trace from the TinyAES dataset used in this talk

What model architecture to use?

We are going to use a **convolutional network architecture**

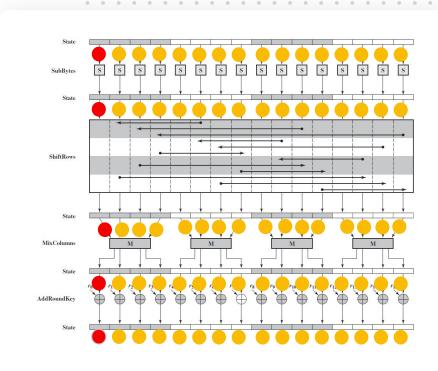


https://de.wikipedia.org/wiki/Convolutional_Neural_Network

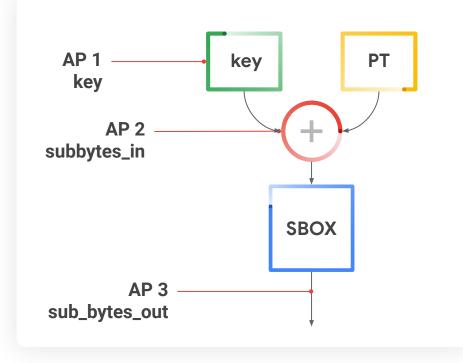
Constants	<pre>dropout_rate = 0.3 filters = 32 kernel_size = 5 num_convolutions = 5 pool_size = 4</pre>
Input	<pre>inputs = layers.Input(shape=(trace_size, 1)) x = inputs</pre>
Pooling	<pre>x = layers.MaxPooling1D(pool_size)(x)</pre>
Convolutions	<pre>for _ in range(num_convolutions): x = layers.SeparableConv1D(filters, kernel_size)(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) filters *= 2</pre>
Pooling	<pre>x = layers.GlobalMaxPool1D()(x)</pre>
Denses	<pre>x = layers.Dropout(dropout_rate)(x) # better with it x = layers.Dense(256, activation='relu')(x) x = layers.BatchNormalization()(x) # helps x = layers.Dropout(dropout_rate)(x)</pre>
softmax	<pre>outputs = layers.Dense(256, activation='softmax')(x)</pre>

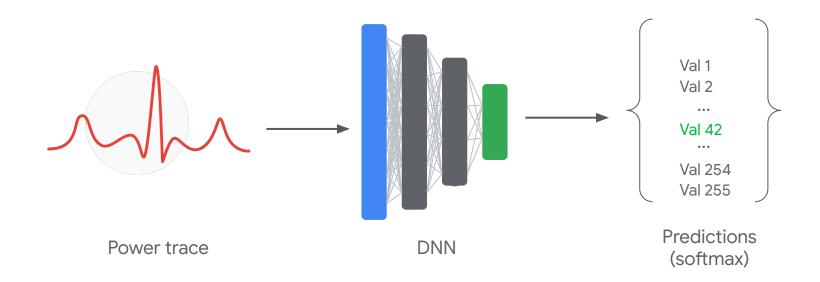
What the model should predict?

AES attack points



Target any of the initial three AES attacks points as they are easily invertible





predict a single byte at the time

256 predictions per model: one for each attack point potential value

.

. .

• •

.

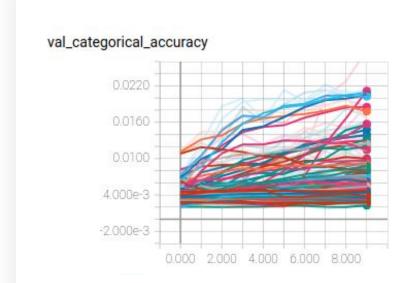
.

.

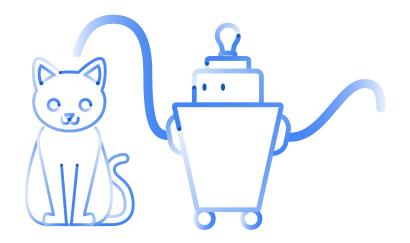
. . .

0 0

Learning crypto is hard ... most models won't converge



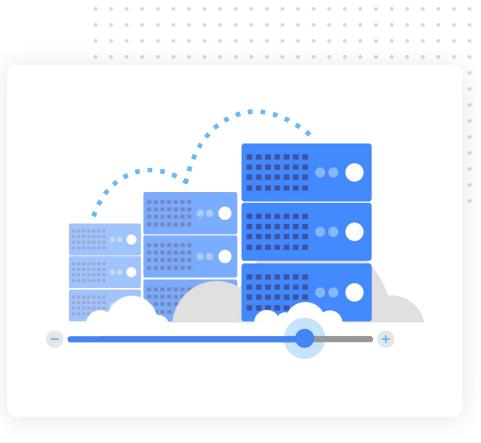
How do I find a model that work?



SCAAML models are hard to find by hand so instead it is best to use hyper-tuning to find the right model automatically

Google

Trained 1000+ to find the right one using **Keras Tuner** and **Kubernetes** on **Google Cloud**



Hypertuning found **very effective models** however **none of them are simple**

Pooling x = layers.ConvD(file, kernel_size, strides=strides, padding='same', ar layers.ConvD(filters, kernel_size, strides=strides, padding='same')(x) x = layers.SatchWormalization()(x) Convolutions with skip-connection for idx in range(num_convolutions): Pooling filters + ? residual = layers.ConvD(filters, kernel_size, padding='same')(x) x = layers.SatchWormalization()(x) x = layers.Activation('relu')(x) x = layers.Activation('relu')(x) x = layers.SatchWormalization()(x) x = layers.Activation('relu')(x) x = layers.SatchWormalization()(x) x = layers.SatchWormaliz	Input	x = inputs
Convolutions x = layers.Conv10(16, kernel_size, strides=strides, padding='same', activations='relu')(x) x = layers.BatchNormalization()(x) x = layers.BatchNormalization()(x) x = layers.Conv10(filters, kernel_size, strides=strides, padding='same', activation='relu')(x) x = layers.BatchNormalization()(x) for idx in range(num_convolutions): filters *= 2 residual = layers.Conv10(filters, 1, strides=strides, padding='same')(x) x = layers.SeparableConv10(filters, kernel_size, padding='same')(x) x = layers.SeparableConv10(filters, kernel_size, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.Conv10(filters, kernel_size, padding='same')(x) x = layers.Conv10(filters, kernel_size, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.Batc	Pooling	<pre>x = layers.MaxPooling1D(pool_size)(x) # helps</pre>
filters *= 2' residual pers.BatchNormalization()(x) x = layers.BatchNormalization()(x) x = layers.Conv1D(filters, kernel_size, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.BatchNormalization()(x) x = layers.BatchNormalization()(x) x = layers.Conv1D(filters, kernel_size, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.Conv1D(filters, kernel_size, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.Conv1D(filters, kernel_size, padding='same')(x) x = layers.Conv1D(filters, kernel_size, p		activation='relu')(x) x = layers.BatchNormalization()(x) x = layers.Conv1D(filters, kernel_size, strides=strides, padding='same', activation='relu')(x)
<pre>x = layers.MaxPoolingiD(kernel_size, strides=strides, padding='same')(x) x = layers.add([x, residual], name='sortcut_%s' % (idx)) for idx in range(nun_residuals): residual = x x = layers.Conv1D(filters, kernel_size, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.Conv1D(filters, kernel_size, padding='same')(x) x = layers.Conv1D(filters, kernel_size, padding='same'</pre>	skip-connection	<pre>filters *= 2 residual = layers.Conv1D(filters, 1, strides=strides, padding='same')(x) x = layers.SeparableConv1D(filters, kernel_size, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.Conv1D(filters, kernel_size, padding='same')(x) x = layers.BatchNormalization()(x)</pre>
Residual blocksresidual = x' x = layers.Conv1D(filters, kernel_size, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.Conv1D(filters, kernel_size, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.BatchNormalization()(x) x = layers.BatchNormalization()(x) x = layers.BatchNormalization()(x) x = layers.BatchNormalization()(x) 		x = layers.MaxPooling1D(kerne1_size, strides=strides, padding='same')(x)
Poolingx = layers.GlobalMaxPool1D()(x)Densesx = layers.Dense(256, activation='relu')(x)softmaxx = layers.BatchNormalization()(x)	Residual blocks	<pre>residual = x x = layers.ConvlD(filters, kernel_size, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.ConvlD(filters, kernel_size, padding='same')(x) x = layers.ConvlD(filters, kernel_size, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x) x = layers.ConvlD(filters, kernel_size, padding='same')(x) x = layers.ConvlD(filters, kernel_size, padding='same')(x) x = layers.BatchNormalization()(x) x = layers.Activation('relu')(x)</pre>
x = layers.BatchNormalization()(x) # helps outputs = layers.Dense(256, activation='softmax')(x)	Pooling	
softmax outputs = layers.Dense(256, activation='softmax')(x)	Denses	<pre>x = layers.Dense(256, activation='relu')(x)</pre>
ecurity and Privacy Group Good	softmax	
	ecurity and Privacy Group	Google

P

.

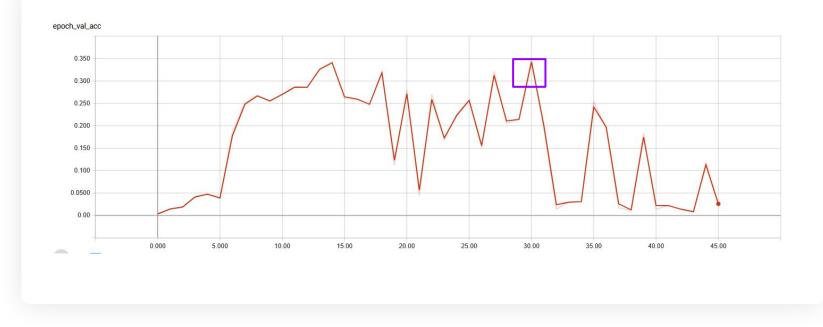
•••

.

.

. . .

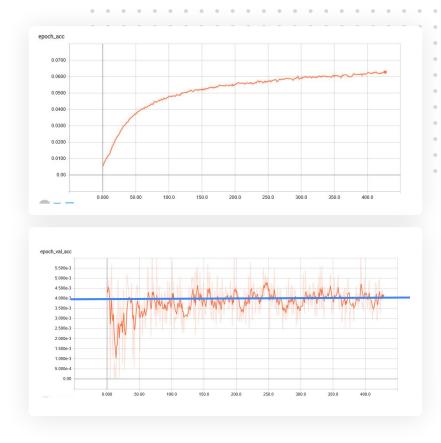
0 0

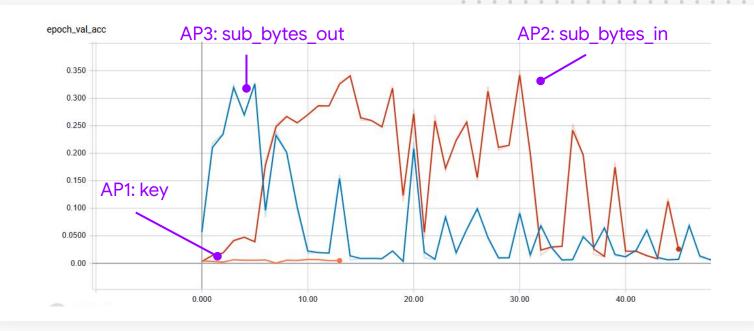


our model reached 34.94% validation accuracy before collapsing

Google

Data augmentation can help but if badly configured it prevents the model from converging



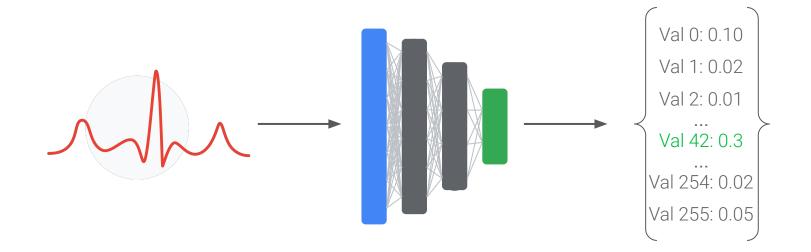


Choosing the right attack point matters to get the best performance. The best attack point varies from architecture to architecture

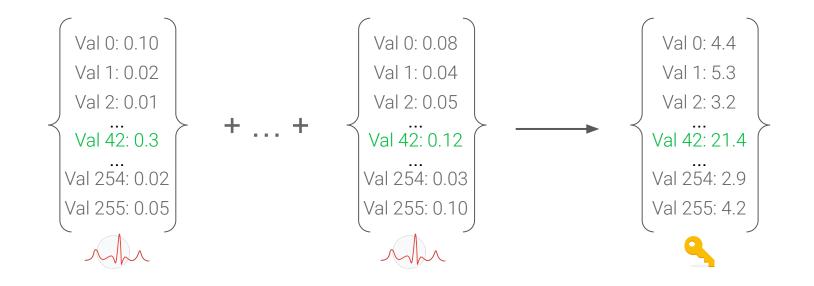
How do I recover the key?

Leverage all model predictions on many traces to carry out probabilistic attacks

Probabilistic attack: single trace

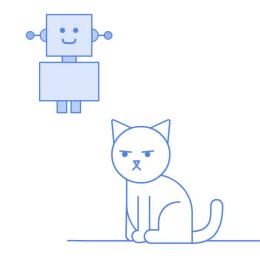


Probabilistic attack: summing traces*



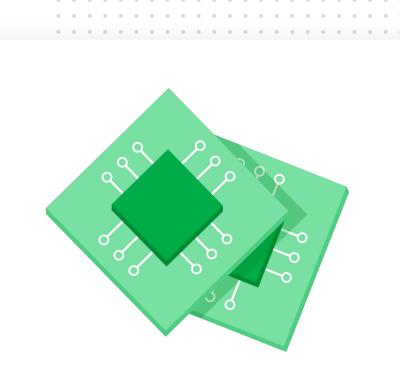
Google

*sum uses log10 + ϵ



Does it work across chips?

Use a different chip to create the holdout dataset used to evaluate attack effectiveness

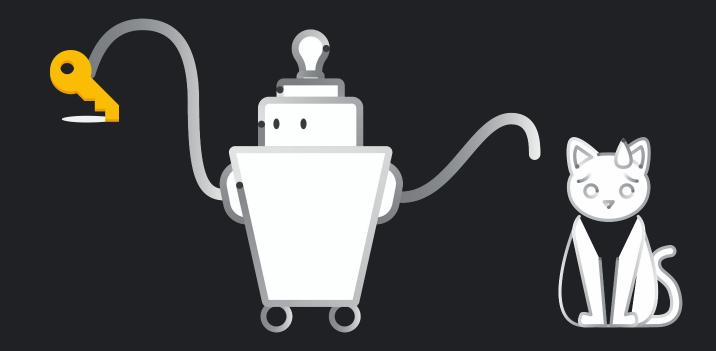


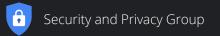
How to evaluate attack effectiveness?

Success metrics

Metric	Description	Baseline
Тор 1	Number of bytes correctly predicted	0.004% (1/256)
Тор 5	Number of times correct byte is in top5	0.02% (5/256)
Mean rank	Average rank of the correct byte	128
Max rank	Maximum rank of the correct byte	256

Holdout dataset is composed of **100 keys** with **300 power traces** for each key that use a different plaintext

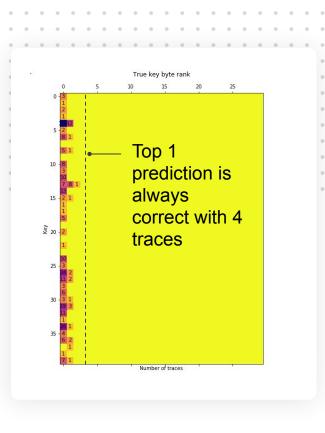




Success! We recovered 100% of the keys!

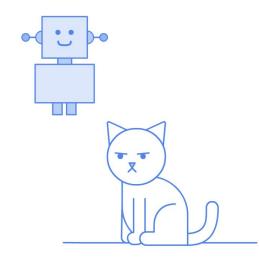
Results: perfect score!

Metric	Baseline	Results
Top 1	0.004% (1/256)	100%
Top 5	0.02% (5/256)	100%
Mean rank	128	0
Max rank	256	0



Google

Despite having "only a 30% accuracy" our model allows to **recover automatically** 100% of the bytes with at most 4 traces (81% with a single trace!) on a different chip

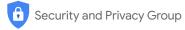


How about protected implementations?

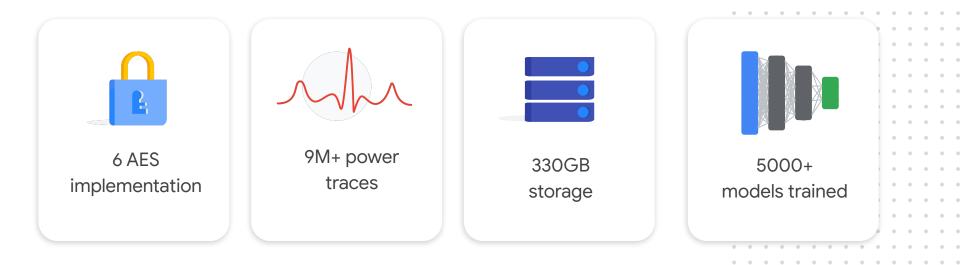


Hardened implementation needs significantly more advanced techniques, computation and data

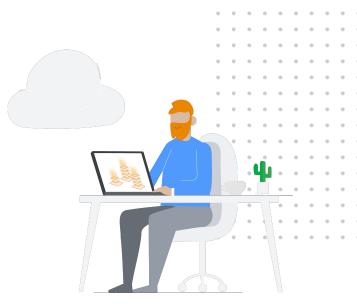
What's next?



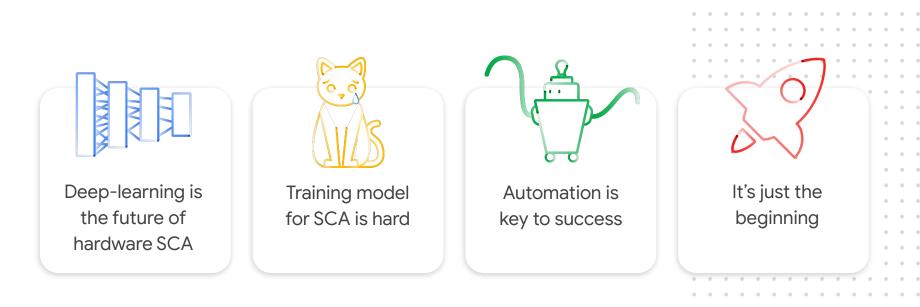
Testbed key numbers

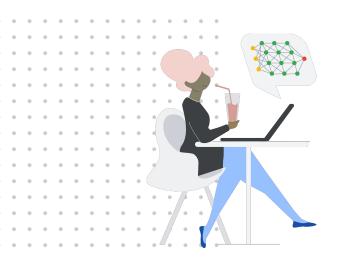


Hope the initial draft of our paper will be public in a few weeks with our results



Takeaways





SCAAML allow to focus on crypto algorithms design and analysis by automatically leveraging computing and Al improvements to assess their security

Keep up with our progress on deep-learning side-channel attacks: https://elie.net/scaaml

