
Busting Frame Busting:

a Study of Clickjacking Vulnerabilities on Popular Sites

Gustav Rydstedt, Elie Bursztein, Dan Boneh
Stanford University

{rydstedt,elie,dabo}@stanford.edu

Collin Jackson
Carnegie Mellon University
collin.jackson@sv.cmu.edu

June 17, 2010

Abstract

Web framing attacks such as clickjacking use
iframes to hijack a user’s web session. The most
common defense, called frame busting, prevents
a site from functioning when loaded inside a
frame. We study frame busting practices for the
Alexa Top-500 sites and show that all can be cir-
cumvented in one way or another. Some circum-
ventions are browser-specific while others work
across browsers. We conclude with recommen-
dations for proper frame busting.

1 Introduction

Frame busting refers to code or annotation
provided by a web page intended to prevent
the web page from being loaded in a sub-frame.
Frame busting is the recommended defense
against clickjacking [9] and is also required
to secure image-based authentication such as
the Sign-in Seal used by Yahoo. Sign-in Seal
displays a user-selected image that authenticates
the Yahoo! login page to the user. Without
frame busting, the login page could be opened
in a sub-frame so that the correct image is
displayed to the user, even though the top
page is not the real Yahoo login page. New
advancements in clickjacking techniques [20]
using drag-and-drop to extract and inject data
into frames further demonstrate the importance
of secure frame busting.

Figure 1: Visualization of a clickjacking attack
on Twitter’s account deletion page.

Figure 1 illustrates a clickjacking attack: the
victim site is framed in a transparent iframe that
is put on top of what appears to be a normal
page. When users interact with the normal page,
they are unwittingly interacting with the victim
site. To defend against clickjacking attacks, the
following simple frame busting code is a com-
monly used by web sites:

i f (top . l o c a t i o n != l o c a t i o n)
top . l o c a t i o n = s e l f . l o c a t i o n ;

Frame busting code typically consists of a
conditional statement and a counter-action that
navigates the top page to the correct place.
As we will see, this basic code is fairly easy
to bypass. We discuss far more sophisticated
frame busting code (and circumvention tech-
niques) later in the paper.

1

Our contribution. We begin with a survey of
frame busting code used by the Alexa Top-500
sites which includes a good mixture of banks, so-
cial networks, online merchandise, trading, and
gaming. We also surveyed all top US banks, as
these are obvious high-risk targets for clickjack-
ing. Section 2 describes the semi-automated tool
we used to locate and extract the frame bust-
ing code. Our survey shows that an average of
3.5 lines of JavaScript was used while the largest
implementation spanned over 25 lines. The ma-
jority of frame busting code was structured as a
conditional block to test for framing followed by
a counter-action if framing is detected.

% of web site
Top 500 14%
Top 100 37%
Top 10 60%

Table 1: Frame busting among Alexa-Top sites

A majority of counter-actions navigate the
top-frame to the correct page. A few erase
the framed content, most often through a
document.write(’ ’). Some use exotic con-
ditionals and counter actions. We describe the
frame busting code we found in the next sections.
Table 1 summarizes frame busting among Alexa-
Top 500 sites. Clearly frame busting is far from
ubiquitous suggesting that clickjacking attacks
are still overlooked by major web sites.

The remainder of the paper is organized as
follow: In Section 2 we describe how we did our
survey. In Section 3 we turn to attacks on frame
busting code. We show that all currently de-
ployed code can be circumvented in all major
browsers. We present both known and new tech-
niques. In Section 4 we discuss attacks that tar-
get exotic frame busting code at specific websites
including social networking and retail sites. In
Section 5 we discuss strategies for safer frame
busting. We also discuss an alternate approach
to frame busting based on the X-FRAME-OPTIONS
header. Our survey shows that only three sites

of the Top-500 uses this header. All other sites
rely purely on JavaScript for frame busting.

2 A Survey of Frame busting
Code

Many of the Top-500 sites contain a significant
amount of JavaScript, some inlined and some
dynamically loaded. Manually filtering through
this code looking for frame busting snippets
can be difficult. This is further exacerbated
by JavaScript obfuscation, predominantly source
code packing, used by many big sites.

To locate frame busting code we used a Java-
based browser emulator called HTMLUnit [13].
As a headless emulator it can be used for limited
debugging of JavaScript. This gave us the ability
to dynamically frame pages and break at the ac-
tual script used for frame busting. Although this
tool was of great help, some manual labor was
still required to de-obfuscate and trace through
packed code. Of the Top-500 sites, many do not
frame bust on their front page. Instead, they
only frame bust on a login page or on a password
reset page. Some of the manual labor came from
trying to locate an actual a subpage deploying
frame busting.

Popular frame busting code. Most sites
we surveyed use frame busting code described
in Tables 2 and 3. Some sites deploy multiple
counter-actions and conditionals as backup. Five
sites additionally relied on document.referrer
to test for framing. More exotic frame busting
code is discussed in Section 4.

3 Generic Attacks

Before discussing more exotic frame busting, we
first describe a number of attacks on the basic
methods in Tables 2 and 3. We summarize these
attacks in Table 4 at the end of the section.

2

Common frame busting code

unique sites conditional statement
38% if (top != self)

22.5% if (top.location != self.location)
13.5% if (top.location != location)

8% if (parent.frames.length > 0)
5.5% if (window != top)
5.5% if (window.top !== window.self)

2% if (window.self != window.top)
2% if (parent && parent != window)
2% if (parent && parent.frames && parent.frames.length>0)
2% if((self.parent&&!(self.parent===self))&&(self.parent.frames.length!=0))

Table 2: Frame busting conditional statement

unique sites counter-action
7 top.location = self.location
4 top.location.href = document.location.href
3 top.location.href = self.location.href
3 top.location.replace(self.location)
2 top.location.href = window.location.href
2 top.location.replace(document.location)
2 top.location.href = window.location.href
2 top.location.href = "URL"
2 document.write(’’)
2 top.location = location
2 top.location.replace(document.location)
2 top.location.replace(’URL’)
1 top.location.href = document.location
1 top.location.replace(window.location.href)
1 top.location.href = location.href
1 self.parent.location = document.location
1 parent.location.href = self.document.location
1 top.location.href = self.location
1 top.location = window.location
1 top.location.replace(window.location.pathname)
1 window.top.location = window.self.location
1 setTimeout(function(){document.body.innerHTML=’’;},1);
1 window.self.onload = function(evt){document.body.innerHTML=’’;}
1 var url = window.location.href; top.location.replace(url)

Table 3: Counter-action statement
3

Figure 2: Double Framing Attack

3.1 Double framing

Some counter-actions in Table 3 navigate to
the correct page by assigning a value to
parent.location. This works well if the vic-
tim page is framed by a single page. However,
we discovered that if the attacker encloses the
victim by two frames (Fig. 2), then accessing
parent.location becomes a security violation
in all popular browsers, due to the “descendant”
frame navigation policy we proposed and imple-
mented in [3]. This security violation disables
the counter-action navigation.

Example. Victim frame busting code:

i f (top . l o c a t i o n != s e l f . l o c a t i o n) {
parent . l o c a t i o n = s e l f . l o c a t i o n ;

}

Attacker top frame:

<i f rame s r c=”at tacke r2 . html”>

Attacker sub-frame:

<i f rame s r c=”http ://www. v ic t im . com”>

3.2 The onBeforeUnload event

A user can manually cancel any navigation
request submitted by a framed page. To
exploit this the framing page registers an
onBeforeUnload handler which is called when-
ever the framing page is about to be unloaded
due to navigation [7]. The handler function
returns a string that becomes part of a prompt
displayed to the user. Say the attacker wants to
frame PayPal. He registers an unload handler
function that returns the string “Do you want
to exit PayPal?”. When this string is displayed
to the user (see screenshot 3) the user is likely to
cancel the navigation, defeating PayPal’s frame
busting attempt.

The attacker mounts this attack by register-
ing an unload event on the top page using the
following code:

<s c r i p t >
window . onbeforeunload = func t i on ()
{

return ”Asking the user n i c e l y ” ;
}

</s c r i p t >
<i f rame s r c=” http ://www. paypal . com”>

PayPal’s frame busting code will generate a
BeforeUnload event activating our function and
prompting the user to cancel the navigation
event.

3.3 onBeforeUnload – 204 Flushing

While the previous attack requires user inter-
action, the same attack can be done without
prompting the user [7]. Most browsers (IE7, IE8,
Google Chrome, and Firefox) enable an attacker
to automatically cancel the incoming navigation
request in an onBeforeUnload event handler by
repeatedly submitting a navigation request to a
site responding with “204 - No Content.” Navi-
gating to a No Content site is effectively a NOP,
but flushes the request pipeline, thus canceling
the original navigation request. Here is sample
code to do this:

4

var prevent bust = 0
window . onbeforeunload =

func t i on () { k i l l b u s t++ }
s e t I n t e r v a l (func t i on () {
i f (k i l l b u s t > 0) {

k i l l b u s t −= 2 ;
window . top . l o c a t i o n =

’ http :// no−content −204.com ’
}
} , 1) ;
<i f rame s r c=” http ://www. v ic t im . com”>

Figure 3: Asking Nicely

3.4 Exploiting the XSS filter

IE8 and Google Chrome introduced reflective
XSS filters that help protect web pages from cer-
tain types of XSS attacks. Nava and Lindsay [18]
observed that that these filters can be used to
circumvent frame busting code.

IE8. The IE8 XSS filter compares given request
parameters to a set of regular expressions in
order to look for obvious attempts at cross-site
scripting. Using “induced false positives”, the
filter can be used to disable selected scripts. By
matching the beginning of any script tag in the
request parameters, the XSS filter will disable
all inline scripts within the page, including
frame busting scripts. External scripts can also
be targeted by matching an external include,
effectively disabling all external scripts. Since

sub-sets of the JavaScript loaded can is still func-
tional (inline or external) and cookies are still
available, this attack is effective for click-jacking.

Example. Victim frame busting code:

<s c r i p t >
i f (top != s e l f) {

top . l o c a t i o n=s e l f . l o c a t i o n ;
}

</s c r i p t >

Attacker:

<i f rame s r c=
” http ://www. v ic t im . com/?v=<s c r i p t > i f ’ ’>

The XSS filter will match that parameter
<script>if to the beginning of the frame bust-
ing script on the victim and will consequently
disable all inline scripts in the victim page, in-
cluding the frame busting script.

Google Chrome. The XSSAuditor filter [4],
deployed in Google Chrome, gives the attacker
the ability to selectively cancel a particular
script block. By matching the entire contents
of a specific inline script, XSSAuditor disables it.

This enables the framing page to specifically
target a snippet containing the frame busting
code, leaving all the other functionalities in-
tact. XSSAuditor can be used to target exter-
nal scripts as well, but the filter will only disable
targeted scripts loaded from a separate origin.

Example. victim frame busting code:

i f (top != s e l f) {
top . l o c a t i o n=s e l f . l o c a t i o n ;

}

Attacker:

<i f rame s r c=” http ://www. v ic t im . com/?v=
i f (top+!%3D+s e l f)+%7B+top . l o c a t i o n
%3Dse l f . l o c a t i o n%3B+%7D”>

Here the Google Chrome XSS filter will disable
the frame busting script, but will leave all other
scripts on the page operational. Consequently,

5

the framed page will function properly, suggest-
ing that the attack on Google Chrome is more
effective than the attack on IE8.

3.5 Referrer checking problems

Some sites allow their pages to be framed by
their own site. This is usually done by check-
ing document.referrer, but is often done incor-
rectly. We give a few examples from our survey.

Example 1. Consider the following code from
a large retailer:

i f (top . l o c a t i o n != l o c a t i o n) {
i f (document . r e f e r r e r &&
document . r e f e r r e r . indexOf
(”walmart . com”) == −1)
{

top . l o c a t i o n . r e p l a c e
(document . l o c a t i o n . h r e f) ;
}

}

This page can be framed by an attacker who
controls a domain walmart.com.badgy.com.

Example 2. Using match can be equally disas-
trous if the regular expression is buggy. Consider
the following code from the NY Times website :

i f (window . s e l f != window . top &&
! document . r e f e r r e r . match (
/ https ? :\/\/ [ˆ?\/]+\ . nytimes \ . com\//))

{
top . l o c a t i o n . r ep l a c e (

window . l o c a t i o n . pathname) ;
}

Since the regular expressions is not anchored to
the beginning of the URL, any match of https:
//www.nytimes.com/ in the framing URL will
allow framing. All the attacker has to do is
place the string https://www.nytimes.com/ in
its URL parameter set so that framing is (incor-
rectly) allowed as shown in the screenshot 4

It should be noted that the referrer header
is not sent from a secure context (https) to
non-secure context (http) and is frequently
removed by proxies [2]. In the examples
above a missing referrer can lead to the wrong

action taking place, thus limiting the useful-
ness of the referrer header for “friendly framing.”

Figure 4: Result of referrer checking attack

Referrer and double framing. Allowing cer-
tain sites to frame can allow for indirect framing
of content if the framing site does not deploy
frame busting techniques. A convincing example
is MySpace who allows for Google Images to
frame profiles. Google’s image search makes no
attempt at frame busting and should, through
its extensive search mechanism, be considered
an open-redirect or “open-framing-redirect.” To
frame a MySpace profile using Google Image
Search, an attacker would simply search for
a desired profile name in a sub-frame. This
double framing allows for profiles to be framed
by any third entity. There are numerous ways of
hiding undesirable graphics in the search frame
including scrolling and placing elements on top.

6

https://www.nytimes.com/
https://www.nytimes.com/
https://www.nytimes.com/

IE7 IE8 FF3 Google Chrome 5 Safari 4
JavaScript disabling - Restricted Zone [14] X
JavaScript disabling - Sandbox Attribute X
JavaScript disabling - designMode [20] X X
JavaScript disabling - XSS Filter [18] X X
location clobbering [21] X X
onBeforeUnload - 204 Flushing [7] X X X
parent.location double framing X X X X X
poorly written frame busting X X X X X

Table 4: Summary of attacks and affected browsers

3.6 Clobbering top.location

Several modern browsers treat the location
variable as a special immutable attribute across
all contexts. However, this is not the case in IE7
and Safari 4.0.4 where the location variable can
be redefined.

IE7. Once the framing page redefines location,
any frame busting code in a subframe that tries
to read top.location will commit a security
violation by trying read a local variable in
another domain [21]. Similarly, any attempt to
navigate by assigning top.location will fail.

Example. Victim frame busting code:

i f (top . l o c a t i o n != s e l f . l o c a t i o n) {
top . l o c a t i o n = s e l f . l o c a t i o n ;

}

Attacker:

<s c r i p t > var l o c a t i o n = ” c lobbered ” ;
</s c r i p t >

<i f rame s r c=” http ://www. v ic t im . com”>
</i frame>

Safari 4.0.4. We observed that although
location is kept immutable in most circum-
stances, when a custom location setter is defined
via defineSetter, (through window) the object

location becomes undefined. The framing page
simply does:

<s c r i p t >
window . d e f i n e S e t t e r (” l o c a t i o n ” , func t i on () { }) ;
</s c r i p t >

Now any attempt to read or navigate the top
frame’s location will fail.

3.7 IE Restricted Zone

Most frame busting relies on JavaScript in the
framed page to detect framing and “bust” itself
out. If JavaScript is disabled in the context
of the subframe, the frame busting code will
not run. In Internet Explorer content from the
“Restricted Zone” is loaded with Javascript
disabled and no cookies.

To mark a frame as coming from the Re-
stricted Zone the framing page gives the iframe
element the attribute security=restricted. In
earlier work [14] we observed that this feature
can be used to defeat frame busting.

Example. Attacker:

<i f rame s r c=” http ://www. v ic t im . com”
s e c u r i t y=” r e s t r i c t e d ”></i frame>

The resulting frame will have JavaScript dis-
abled, causing the frame busting code in Table 2
to not run. For click-jacking this method can be
limiting — since no cookies are delivered to the
subframe, session-riding becomes difficult.

7

3.8 Sandbox attribute

Recently, browser vendors have begun stan-
dardization of Internet Explorer’s proprietary
restricted zone feature in the form of a new
sandbox attribute on the iframe tag. This at-
tribute has been specified in HTML5 [11] and
is currently implemented in the Google Chrome
browser. This feature can be used to disable
JavaScript in the same way as the restricted
zone; however, because cookies are delivered in
the subframe, clickjacking attacks can take ad-
vantage of existing sessions that the user has es-
tablished.

3.9 Design mode

Stone [20] showed that design mode can be
turned on in the framing page (via docu-
ment.designMode), disabling JavaScript in top
and sub-frame. Again, cookies are delivered to
the sub-frame. Design mode is currently imple-
mented in Firefox and IE8.

3.10 Mobile Sites

Many of the top sites serve mobile alternatives
to their main pages. Served at sub-domains
such as m.example.com or mobile.example.com,
these sites often deliver full or significant subsets
of functionality relative to their “real” counter-
parts. Unfortunately, most sites who framebust
on their primary domain do not framebust their
mobile sites. In fact, we found only one that
did out of our entire dataset. Only a minimal
set of sites actually do discretionary rendering
by user-agent, enabling us to frame mobile in-
terfaces in all browsers just like we would their
regular site. To make matters worse, many sites
do not differentiate sessions between the regular
and the mobile site; that is, if you are logged in at
www.example.com you are also logged in at mo-
bile.example.com. This enables the attacker to
clickjack the mobile site (on a desktop browser)
and gain control of a fully functional site.

4 Site Specific Attacks

While most websites rely on the popular frame-
busting code snippets presented in the previous
sections, some prominent websites choose to de-
velop their own techniques. In this section, we
discuss some of the most interesting defenses we
found during our survey and present techniques
specifically designed to defeat them.

4.1 Shedding a Ray of Light in the
Darkness

Facebook.com frame-busting approach is radi-
cally different from popular techniques. Instead
of busting out of its the frame, Facebook inserts
a gray semi-transparent div that covers all of the
content when a profile page is framed (see Fig-
ure 5(a)). When the user clicks anywhere on the
div, Facebook busts out of the frame. This ele-
gant approach allows content to be framed,while
blocking clickjacking attacks. The vulnerable
version of the code, that was patched after we
reported the attack to Facebook, used to work
as follows:

i f (top != s e l f) {
window . document . wr i t e (’ ’<div s t y l e=

’ background : b lack ; opac i ty : 0 . 5 ;
f i l t e r : alpha (opac i ty = 50) ;
p o s i t i o n : abso lu t e ; top : 0px ; l e f t : 0px ;
width : 9999px ; he ight : 9999px ;
z−index : 1000001 ’

onCl ick=’ top . l o c a t i o n . h r e f=window . l o c a t i o n . h r e f ’>
</div> ’ ’) ;

}

When framed, the code inserts a black div of
dimension 9999x9999px with 50 percent opacity
positioned at 0, 0. Since all Facebook’s con-
tent except this div is centered in the frame,
this framing defense can be defeated by making
the enclosing frame sufficiently large so that the
center of the frame is outside the dark div area.
The content naturally flows to the center of the
frame and is shown to the user without the dark
overlay. The framing code is as follows and the
resulting page is shown in Figure 5(b)

<body s t y l e=” over f low−x : hidden ;

8

Facebook.com

(a) Facebook Black Layer (b) Facebook Black Layer removed

Figure 5: Facebook’s elegant black layer defense

border : 0 px ; margin : 0 px ; ”>

<i f rame width=”21800px” he ight=”2500px”
s r c=” http :// facebook . com/”
frameborder=”0”
marginheight=”0” marginwidth=”0” >

</i frame>

<s c r i p t > window . s c r o l l T o (1 0 2 0 0 , 0) ;
</s c r i p t >

Note that the scrollTo function dynamically
scrolls to the center of the frame where the con-
tent appears in the clear.

4.2 Domain checking errors

USBank uses frame busting code that checks the
referrer domain to decide if framing is allowed.
The code works as follows:

i f (s e l f != top) {
var dom = getDom(document . r e f e r r e r) ;
var okDom = /usbank | l o c a l h o s t | usbnet / ;
var matchDomain = dom . search (okDom) ;

i f (matchDomain == −1) { // bus t }

where getDomain is a function that returns
the domain of a given URL. Observe that any
domain that contains the word usbank will
be allowed to frame the page, which is most
likely not the developer’s intent. For exam-
ple, the Norwegian State House Bank (http:
//www.husbanken.no) and the Bank of Moscow
(http://www.rusbank.org) will be allowed to
frame the page since both contain the string
usbank in the domain.

4.3 Trust problems

Myspace.com uses the following frame busting
code:

try{
A=! top . l o c a t i o n . h r e f

}catch (B){}
A=A&&!(document . r e f e r r e r . match (

/ˆ https ?:\/\/[−a−z0 −9 .]∗\ . goog l e \ . (co \ .
| com \ .) ? [a−z]+\/ imgres / i))
&&!(document . r e f e r r e r . match (
/ˆ https ? : \ / \ / ([ˆ \ /] ∗ \ .) ? (myspace \ . com
|myspace \ . cn
| s ims idek i ck \ . com
| l e v i s awards \ . com\// i)) ;

9

http://www.husbanken.no
http://www.husbanken.no
http://www.rusbank.org
Myspace.com

i f (A) { // frame bus t }

By design the code allows Myspace to be framed
by Google images. Google images, however,
does not use frame busting. Consequently, an
attacker can frame Google images and then
cause Google images to frame Myspace (e.g.
by issuing a specific Google search query that
leads to a Myspace page). Since Myspace
sees a referrer from Google images it does not
attempt to navigate away. The result is shown
in Figure 6.

This example shows that trust relationships in
the context of frame busting can be dangerous.
A partner site that does not frame bust can cause
the trusing page to be framed by an attacker.

5 Frame busting Securely

We now turn to defenses and discuss how a web-
site can protect itself from being framed. We first
review relevant client-side features and then sug-
gest a JavaScript-based frame busting approach
that resists current attacks.

5.1 X-FRAME-OPTIONS

Microsoft introduced in Internet Explorer 8 a
specific defense against clickjacking and frame
busting called X-FRAME-OPTIONS, an HTTP
header sent on HTTP responses. This header
can have two different values: DENY and
SAMEORIGIN. When DENY is provided, IE 8 will
not render the requested site within a frame con-
text. If the value SAMEORIGIN is used, IE will
block the page only if the origin of the top level-
browsing-context is different from the origin of
the content containing the directive. While this
mechanism is highly effective, there are three
main limitations to this approach:

• Per-page policy specification. The pol-
icy needs to be specified for every page,
which can complicate deployment. Provid-
ing the ability to enforce it for the entire

site, at login time for instance, could sim-
plify adoption.

• Problems with multi-domain sites.
The current implementation does not allow
the webmaster to provide a whitelist of do-
mains that are allowed to frame the page.
While whitelisting can be dangerous (see the
MySpace example), in some cases a webmas-
ter might have no choice but to use more
than one hostname.

• Proxies. Web proxies are notorious for
adding and stripping headers. If a web
proxy strips the X-FRAME-OPTIONS header
then the site loses its framing protection.

X-FRAME-OPTIONS has been quickly adopted
by browser vendors; every browser except Fire-
fox supports it in the latest version [12], and it
is supported by the NoScript Firefox extension
as well. Adoption by web sites has been slower;
a recent survey showed that only 4 out of 10,000
top-sites use it[15]. This observation is consis-
tent with our finding: we found only three sites
using it during our survey.

5.2 Content Security Policy

Content Security Policy [17] is a Mozilla initia-
tive to provide to web developers with a way
to specify how content interacts on their web
sites. It is scheduled for deployment in Firefox
3.7. As with X-FRAME-OPTIONS, the policy is
delivered via an HTTP response header. It is
more general than X-FRAME-OPTIONS, allowing
the website owner to enforce other types of
content interactions. For example, it allows sites
to restrict script sources to specific origins.

To prevent a site from being framed, a web-
master can use the frame-ancestors directive
to specify which origins are allowed to embed the
page into a frame or an iframe. Therefore, un-
like X-FRAME-OPTIONS the webmaster can spec-
ify third party web sites that are allowed to em-
bed the iframe. CSP does suffer from the other

10

Figure 6: Because MySpace whitelists Google in
the document referrer, an attacker’s site can use
Google Image search to launch clickjacking at-
tacks on MySpace.

limitation of X-FRAME-OPTIONS: it does not pro-
vide a way to enforce a site wide policy. It has
not yet been adopted by sites as it is still in beta.

5.3 Using JavaScript

Until X-FRAME-OPTIONS or another browser-
based defense is universally deployed, web sites
that wish to defend against clickjacking have
little choice but to use JavaScript. We present
in Figure 7 what we think is currently the best
JavaScript code to defend against framing.

This code works as follows: When the page
is loaded, the style sheet hides all content on
the page. If JavaScript is disabled, the page will
remain blank. Similarly, if the page is framed,
it will either remain blank or it will attempt to
frame bust. If the frame busting code is blocked,
say by hooking the unload event or doing a 204
flushing attack, the page will remain blank. The
script only reveals the document’s contents if the

page is not running in a frame. Note that users
who have JavaScript disabled, via browser set-
ting or NoScript, will not be able to use the site.
Designers might want to have a fallback mecha-
nism if such is the case.

In our example the entire page is initially in-
visible, but this defense can be more fine grained
by having sub-elements be invisible instead. This
way, a user can be presented with a message if
JavaScript is disabled. However, enabling any
subset of functionality beyond that simple mes-
sage is not advised.

We tested a handful of load-heavy sites with
the code injected on the top of the page. With
Firefox’s YSlow and Chrome’s Speed Tracer, we
were not able to identify any significant decreases
in render or load time.

We emphasize that this code is not proven to
be a secure approach to frame busting. As we
have shown throughout the paper, many bugs
and exploits are available for an attacker to tar-
get JavaScript frame busting, and there are likely
many more. Our snippet might already be vul-
nerable to unknown attacks. To our knowledge,
it is the best current approach. Variants of this
approach has been blogged about before [?] [?].

6 Related Work

The first mention of a negative impact of trans-
parent iframes is a bug report for the Mozzila
Firefox browser from 2002 [19]. The term click-
jacking [9], was coined by Hansen and Grossman
in 2008. Clickjacking differs from phishing [8]
because it does not entice the user to enter se-
cret credentials into a fake site. Instead, the user
must enter their credentials into the real site to
establish an authenticated session. The attack
can proceed until the user’s session expires.
Clickjacking can be considered an instance of the
confused deputy problem [5]. The term “con-
fused deputy” was coined by Hardy in 1988 [10].
Another example of the confused deputy prob-
lem on the web is cross-site request forgery [2].
The web-key authentication scheme [6] uses

11

<s t y l e >
html { d i s p l a y : none ;}
</s ty l e >

<s c r i p t >
i f (s e l f == top) {

document . documentElement . s t y l e . d i s p l a y = ’ block ’ ;
} else {

top . l o c a t i o n = s e l f . l o c a t i o n ;
}
</s c r i p t >

Figure 7: Our proposed framebusting code

unguessable secrets in URLs instead of cook-
ies for authentication. This approach can mit-
igate confused deputy attacks such as clickjack-
ing and CSRF. Experimental client-side defenses
for clickjacking include ClearClick [16] and Click-
IDS [1]. These defenses have not yet been widely
deployed, so they cannot be relied upon by web
sites as a primary defense. They also introduce
some compatibility costs for legacy web sites,
which may hinder browser vendor adoption.

7 Conclusion

We surveyed the frame busting practices of the
top 500 websites. Using both known and novel
attack techniques, we found that all of the click-
jacking defenses we encountered could be cir-
cumvented in one way or another. Many of
the attacks are generic and can be used against
a wide variety of sites. We found that even
sites with advanced clickjacking defenses, such as
Facebook and MySpace, could be defeated using
targeted attacks. After reviewing the available
defenses, we propose a JavaScript-based defense
to use until browser support for a solution such
as X-FRAME-OPTIONS is widely deployed.

Acknowledgments

This work was supported by NSF and an AFOSR
MURI grant.

References

[1] Marco Balduzzi, Manuel Egele, Engin
Kirda, Davide Balzarotti, and Christopher
Kruegel. A solution for the automated de-
tection of clickjacking attacks. In ASI-
ACCS’10, 2010.

[2] Adam Barth, Collin Jackson, and John C.
Mitchell. Robust defenses for cross-site re-
quest forgery. In In proc. of 15th ACM Con-
ference on Computer and Communications
Security (CCS 2008), 2008.

[3] Adam Barth, Collin Jackson, and John C.
Mitchell. Securing frame communication
in browsers. Communications of the ACM
(CACM 2009), 2009.

[4] Daniel Bates, Adam Barth, and Collin Jack-
son. Regular expressions considered harm-
ful in client-side xss filters. In Proceedings
of the 19th International World Wide Web
Conference (WWW 2010), 2010.

[5] Tyler Close. The con-
fused deputy rides again!

12

http://waterken.sourceforge.net/clickjacking/,
2008.

[6] Tyler Close. Web-key: Mashing with per-
mission. In Web 2.0. Security and Privacy
(W2SP), 2008.

[7] coderr. Preventing frame busting and
click jacking (ui redressing). http:
//coderrr.wordpress.com/2009/02/13/
preventing-frame-busting-and-click-jacking-ui-redressing,
2008.

[8] Rachna Dhamija and J. D. Tygar. The
battle against phishing: Dynamic security
skins. In SOUPS ’05: Proceedings of the
2005 symposium on Usable privacy and se-
curity, pages 77–88, 2005.

[9] R. Hansen. Clickjacking.
http://ha.ckers.org/blog/20080915/clickjacking/.

[10] Norm Hardy. The confused deputy. In Op-
erating Systems Reviews, 1998.

[11] Ian Hickson et al. HTML5 sandbox
attribute, 2010. http://www.whatwg.
org/specs/web-apps/current-work/
#attr-iframe-sandbox.

[12] David Lin-Shung Huang, Mustafa
Acer, Collin Jackson, and Adam
Barth. Browserscope security tests.
http://www.browserscope.org/.

[13] Gargoyle Software Inc. Htmlunit. http:
//htmlunit.sourceforge.net, 2009.

[14] Collin Jackson. Defeating frame bust-
ing techniques, 2005. http://crypto.
stanford.edu/framebust/.

[15] Jason Lam. Adoption of x-frame-
options header. http://blogs.sans.
org/appsecstreetfighter/2009/10/15/
adoption-of-x-frame-options-header/,
October 2009.

[16] Giorgio Maone. Hello ClearClick,
goodbye clickjacking!, October 2008.
http://hackademix.net/2008/10/08/
hello-clearclick-goodbye-clickjacking/.

[17] Mozilla. Secure content policy.
https://wiki.mozilla.org/Security/CSP/Spec,
March 2010.

[18] Eduardo Vela Nava and David Lindsay. Our
favorite xss filters and how to attack them,
July 2009.

[19] Jesse Ruderman. Bug 154957 - iframe
content background defaults to transpar-
ent. https://bugzilla.mozilla.org/
show_bug.cgi?id=154957, June 2002.

[20] Paul Stone. Next generation clickjack-
ing. https://media.blackhat.com/bh-eu-
10/presentations/Stone/BlackHat-EU-
2010-Stone-Next-Generation-Clickjacking-
slides.pdf, 2010.

[21] Michal Zalewski. Browser security hand-
book. http://code.google.com/p/
browsersec/wiki/Part2#Arbitrary_
page_mashups_(UI_redressing).

13

http://coderrr.wordpress.com/2009/02/13/preventing-frame-busting-and-click-jacking-ui-redressing
http://coderrr.wordpress.com/2009/02/13/preventing-frame-busting-and-click-jacking-ui-redressing
http://coderrr.wordpress.com/2009/02/13/preventing-frame-busting-and-click-jacking-ui-redressing
http://www.whatwg.org/specs/web-apps/current-work/#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/#attr-iframe-sandbox
http://www.browserscope.org/
http://htmlunit.sourceforge.net
http://htmlunit.sourceforge.net
http://crypto.stanford.edu/framebust/
http://crypto.stanford.edu/framebust/
http://blogs.sans.org/appsecstreetfighter/2009/10/15/adoption-of-x-frame-options-header/
http://blogs.sans.org/appsecstreetfighter/2009/10/15/adoption-of-x-frame-options-header/
http://blogs.sans.org/appsecstreetfighter/2009/10/15/adoption-of-x-frame-options-header/
http://hackademix.net/2008/10/08/hello-clearclick-goodbye-clickjacking/
http://hackademix.net/2008/10/08/hello-clearclick-goodbye-clickjacking/
https://bugzilla.mozilla.org/show_bug.cgi?id=154957
https://bugzilla.mozilla.org/show_bug.cgi?id=154957
http://code.google.com/p/browsersec/wiki/ Part2#Arbitrary_page_mashups_(UI_redressing)
http://code.google.com/p/browsersec/wiki/ Part2#Arbitrary_page_mashups_(UI_redressing)
http://code.google.com/p/browsersec/wiki/ Part2#Arbitrary_page_mashups_(UI_redressing)

	1 Introduction
	2 A Survey of Frame busting Code
	3 Generic Attacks
	3.1 Double framing
	3.2 The onBeforeUnload event
	3.3 onBeforeUnload – 204 Flushing
	3.4 Exploiting the XSS filter
	3.5 Referrer checking problems
	3.6 Clobbering top.location
	3.7 IE Restricted Zone
	3.8 Sandbox attribute
	3.9 Design mode
	3.10 Mobile Sites

	4 Site Specific Attacks
	4.1 Shedding a Ray of Light in the Darkness
	4.2 Domain checking errors
	4.3 Trust problems

	5 Frame busting Securely
	5.1 X-FRAME-OPTIONS
	5.2 Content Security Policy
	5.3 Using JavaScript

	6 Related Work
	7 Conclusion

