Decaptcha: Breaking 75% of eBay Audio CAPTCHASs

Elie Bursztein
elie@cs.stanford.edu

Abstract

CAPTCHA tests aim at preventing attackers from
performing automatic registration. In this paper we
show that our prototype Decaptcha is able to suc-
cessfully break 75% of eBay audio captchas. We com-
pare its performance with the state of the art, readily
available speech recognition system Sphinz and dis-
cuss the implications for eBay security.

1 Introduction

Distinguishing computers from humans has become
a central issue for website security, as many services
rely on this distinction to work properly. Website
registration is a prominent example of such a service:
applications must ensure that attackers can’t perform
website registration automatically. Gmail must dis-
tinguish humans from computers to prevent abuse by
spammers, and eBay must do so to avoid a flood of
scams and illegal items.

Completely Automated Public Turing tests to tell
Computers and Humans Apart (CAPTCHA') [12]
were developed to allow websites to make this dis-
tinction automatically. While the idea behind these
tests is simple — find something which is easy for hu-
mans and hard for computers — its implementation
has proven difficult. The problem of finding efficient
captchas has become so prominent that even the New
York Times had a column on the subject recently [5].

The security of image-based captchas has re-
ceived a large amount of attention [1], yet audio
captchas, which are often provided alongside image-
based captchas to improve website accessibility, have
been less explored. To our knowledge, the only aca-
demic study [15] to date of audio captcha security ap-
peared in February 2008 and covered only captchas
from Google, Digg and the old reCAPTCHA system.
At the same time, Wintercore demonstrated a proto-

1For lisbility purpose we will write captcha instead of
CAPTCHA in the rest of this paper

Steven Bethard
bethard@stanford.edu

type that was able to break Google audio captchas
using a similar approach [14].

Motivation. Following the observation that audio
captcha security is often overlooked, we evaluate if, a
year after the last study, a knowledgeable attacker is
able to abuse the registration process of the popular
site eBay by breaking the audio captchas. We choose
eBay because to the best of our knowledge the secu-
rity of their audio captchas has never been evaluated.
More precisely we wanted to evaluate the following:

e Feasibility: Is it possible to abuse the eBay reg-
istration system by breaking their audio captcha
system? How many captchas per day could an at-
tacker solve?

e Audio Processing Requirements: What kind
of knowledge and resources are required to break
eBay audio captchas? This is an central question
as it allows us to understand what kind of attackers
would be able to effectively conduct such an attack.
This answer can also serve as a baseline to design
better captchas and implementation guidelines.

e Scraping Requirements: How difficult is the act
of automatically collecting a large number of au-
dio captchas? The security of the captcha defense
is heavily dependent of its implementation. Anti-
scraping mechanisms can play an important role
in mitigating captcha attacks by slowing down the
attacker. We were interested in analyzing the ef-
fectiveness of various choices made by eBay in this
domain. Surprisingly it turns out that the eBay
captcha implementation is flawed in several ways.

Contribution. Our main contribution is the first
attack on the eBay audio captcha system that is able
to break 75% of its audio captchas. To perform this
attack we have:

e Built a scraper. We have developed a multi-
threaded scraper to build our captcha corpus. We
scraped more than 26,000 audio captchas to per-
form our analysis.

e Evaluated state of art software. We have eval-
uated how well a state of art speech recognition sys-
tem, Sphinx [17], is able to break audio captchas.
Our analysis shows that while it can break about
1% of captchas (exceeding the current standard of
0.1% [9]), its accuracy is not high enough to con-
sider it a clear winner.

e Developped a breaker. Following the approach
of [14] and using an eBay implementation flaw to
build a corpus, we have developed our own tool
called Decaptcha that is able to break 75% of eBay
audio captchas. Combined with a medium sized
IP pool, Decaptcha could register over 75,000 fake
accounts on eBay per day.

Outline. The remainder of the paper is organized
as follows: In Sec. 2 we explain the general method-
ology for breaking captchas and present our threat
model. In Sec 3 we present how we scraped audio
captchas from eBay and why their implementation is
flawed. In Sec 4 we analyze how eBay audio captchas
can be broken and determine how many registrations
per day an attacker can achieve. In Sec 5 we discuss
the trade-offs that eBay can implement to mitigate
captcha attacks. In Sec 6 we provide additional re-
lated work. In Sec 7 we conclude.

2 Background

In this section, we summarize how to attack the eBay
registration process, explain how to evaluate the per-
formance of a captcha solver and discuss our threat-
model.

Breaking the Registration Process. Breaking
any registration process involves three steps: scrap-
ing, solving and registering. For the scraping
phase, the attacker develops a program to auto-
matically download the registration page(s) and its
captcha. This is the first line of defense: ultimately
the attacker is bound by the number of registra-
tion pages he is able to fetch each day. Limiting
the number of registration attempts per IP can slow
an attacker, though one with a large IP pool may
still be able to break many captchas. The next
phase, solving, involves determining the correct an-
swer to the captcha from the registration page. This
is the central defense against automatic registration
as captchas are designed to be difficult to solve ef-
ficiently by computer. Finally in the registering
phase the attacker fills in the form and submits it.

This phase is typically the easiest, and we do not dis-
cuss it here — we assume that an attacker who can
obtain a registration page and solve its captcha can
also register successfully.

Breaking Captchas. The solving phase consists
of three steps: preprocessing, segmentation and
classification. In the preprocessing step, parts
of the captcha irrelevant to the task are removed.
For audio captchas, this can include noise reduction
techniques like spectral subtraction. In the segmen-
tation step, the captcha is broken into pieces to
be individually recognized. A simple audio analysis
program might try to break the captcha into digits,
while a speech recognition system might break the
audio into phones. State of the art of captcha design
suggests that segmentation should be the most diffi-
cult stage: for example the robustness of text-based
schemes (images) relies on the difficulty of finding
where the character is, rather than on which charac-
ter it is [9, 18]. Finally, in the classification step,
each identified segment is assigned a label, e.g. a
digit or letter. This may be performed by applying
a machine learning classifier, or, as in speech recog-
nition, by search. At the end of classification, the
system’s final prediction is created by combining the
individual classifications made for each segment.

Performance Evaluation. The most basic measure
of captcha solving efficiency is accuracy, which is the
fraction of the total captchas that were answered cor-
rectly. However, tools may also choose to respond to
some captchas and reject others without answering
them. For example, since eBay captchas are always
6 digits long, an answer that contains more or fewer
digits has clearly been segmented incorrectly. There-
fore we also evaluate solvers using coverage and pre-
cision. Coverage is the fraction of captchas that the
tool attempts to answer. In the eBay case, it is the
number of catpchas that are correctly segmented into
6 digits. Precision is the fraction of the captchas at-
tempted that the solver guesses correctly. Note that
current captcha design goal is to ensure that “auto-
matic scripts should not be more successful than 1 in
10,0007 attempts (i.e. a precision of 0.01%) [9].

Threat Model. To evaluate the security of a
captcha system, the attacker resources (IPs and
knowledge) need to be considered. To model various
access to these resources, we consider the following
four classes of attackers:

e Low: This attacker has little knowledge of speech
recognition and therefore uses an off-the-shelf sys-

Figure 1: Our scraper in action.

tem. This attacker uses TOR [4] and accordingly
has access to approximately 1500 IPs.

e Medium: This attacker also uses off-the-shelf
speech recognition, but has access to a small botnet
providing around 10,000 IPs [19].

e High: This attacker has knowledge of speech
recognition, can build a custom tool, and has ac-
cess to a 10,000 IP botnet pool.

e Advanced: This attacker has the kind of ad-
vanced knowledge and resources available to the
owner(s) of Storm [6] or Conficker [13]. This at-
tacker uses a custom tool and has access to at least
94,335 IPs [11].

3 Scraping

Building a scraper for eBay registration pages served
two purposes: First, it allowed us to evaluate how
many registration pages and captchas could be pulled
each day. Second, these pulled captchas became the
training and evaluation data for our captcha solvers.

Scraping Defense. Scraping eBay uncovered two
interesting facts. First, eBay allows the same captcha
to be re-downloaded but with different voices and
noise levels. This allowed us to build a large train-
ing corpus with minimal annotation, and therefore to
train Decaptcha (Sec 4) with minimal human labor.
The second fact is that eBay fetching limits are a bit
sketchy. You can only fetch about 20 to 40 captchas
per minute by IP, then you have to wait for a variable
amount of time: in some cases the system asked us to
wait 24 hours and sometimes we were able to reuse
the same IP after few minutes. Therefore for the rest
of the paper we take a conservative approach: we as-
sume that the attacker is not able to fetch more than
N captchas per day 2.

2We hope that eBay will enforce this kind of policy in the

o) I[\. —
'M! W I J‘ A ‘4 —sar

Figure 2: Number of captchas fetched per minute for
various set. Statistics aggregated in 5 min intervals

Scraping Speed. Our scraper is written in Perl and
is able to run multiple threads in parallel. It can run
in two modes: Tor mode and botnet mode. The Tor
mode uses Tor as a relay for IPs and the botnet mode
uses our own IPs as relays. We have implemented a
statistical module to optimize the scraping parame-
ters such as the number of captchas to scrape before
changing IP or captcha ID, and to evaluate the scrap-
ing speed of the two approaches. While using our own
IPs provides a stable scraping speed of 60 captchas
per minute, the Tor mode speed varies greatly (Fig
2) from 2 to 16 captchas per minute.

4 Breaking CAPTCHASs

In this section we explore how Sphinx and Decpatcha
can be used to solve eBay audio captchas.

eBay audio captchas are composed of six digits
from zero to nine. Each digit typically comes from
a different recording and these are concatenated to
produce the audio that the user hears. The different
recordings have different noise levels, speaker accents
and speaker genders. We observed that some record-
ings appear to have been programmatically modified
by changing the speed of the utterance.

As discussed in the previous section, we have col-
lected a large corpus of eBay captchas: we collected
about 2000 samples of eight captchas, and 200 sam-
ples for 50 other captchas. We reserved 200 sam-
ples of the first eight captchas and all 200 samples
of the last 50 captchas to evaluate the performance
of the solvers. Overall we scraped more than 26,000
captchas.

future after realizing that the current system is not secure.

Model Acc Prec Cov
Sphinx TIDIGITS 0.3 9.6 3.6
Sphinx HUB4 1.0 289 3.6
Decap 3x100 53.4 65.7 81.3
Decap 3x500 59.6 73.3 81.3
Decap 6x100 65.6 80.7 81.3
Decap 8x1000 75.1 923 81.3

Table 1: Performance of the captcha solvers on the
10,000 items in the 50x200 test data. Acc(uracy),
Prec(ision) and Cov(erage) are shown for each model.

Breaking captchas with Sphinx.. Sphinx [17] is a
state-of-the-art, open source speech recognizer which
can be applied to audio captchas. Sphinx handles
the usual speech recognition steps: converting audio
to features, generating a search graph, and decoding
the features and graph to predict the utterance.

To generate the search graph, Sphinx requires both
an acoustic model and a language model. Numerous
models are freely available for Sphinx, including the
TIDIGITS model, tuned to digit recognition, and the
HUB4 model, tuned to large vocabulary tasks. Lan-
guage models are also available for Sphinx, but since
eBay captchas are always a sequence of six digits, we
used as our language model a simple grammar that
required exactly six digits in a row, with optional si-
lence before and after each digit.

Table 1 shows the performance of the Sphinx rec-
ognizer with the TIDIGITS and HUB4 models. In
both cases, Sphinx produced output for only 3.6%
of the captchas it was presented®. When Sphinx did
produce a transcription for a captcha, it was right
only 9.6% of the time with the TIDIGITS model,
and 28.9% of the time with the HUB4 model. This
is interesting because a naive attacker might expect
the digit-tuned model to perform better on the eBay
digit recognition task. However, the large vocabu-
lary model performs better, most likely because of
its greater exposure to a wider variety of background
noise and word pronunciations.

Overall, the best Sphinx model provides only a
weak attack capability — it would produce only 10 suc-
cessful registrations for 1000 downloaded captchas.

Breaking captchas with Decaptcha.. Since off-
the-shelf software performs poorly on eBay captchas,
we decided to implement our own tool: Decaptcha®.

3Sphinx can fail to produce output for a number of rea-
sons, but essentially this means no word sequence it searched
through was scored highly enough.

4Due to the high accuracy of Decaptcha we can’t disclose it,

Following the work of [8] and [15], Decaptcha works
by looking at voice energy spikes.To do so it applies
a discreet Fourier transform (DFT) to the wave file
and then isolates the energy spikes. Decaptcha uses
a supervised learning algorithm that looks at these
decompositions to build the model which it uses to
recognize digits. As explained in the background sec-
tion (Sec. 2), the key difficulty was the segmenta-
tion. To be efficient this phase requires a lot of tuning
that mainly involves determining three key parame-
ters: the window size, the energy level threshold and
the number of bins for the DFT.

The window size defines the size of each audio
block, or sample. For instance, since eBay captchas
have a 8000hz sampling, having 256 samples requires
a 128 ms window size. This window size is a trade-
off between capturing significant spikes and narrow-
ing them sufficiently so they are discriminatory. The
second parameter is the energy level threshold below
which the sample is considered noise. This is essential
for decomposing the wav into digits and noise. The
last parameter is the number of bins that are used to
store the frequencies resulting from the DFT. Other
parameters come into play such as word overlap and
file offset but they play a less significant role than the
aforementioned ones.

We tuned Decaptcha parameters on our develop-
ment set, selecting the set of parameters in which
the largest number of samples were successfully de-
composed into exactly six parts. The Decaptcha
algorithm is fairly sensitive to the various parame-
ters. For example, on a 300 captcha test set with
its optimal settings Decaptcha decomposes 25//300
captchas correctly, while with settings only slightly
off of these, it decomposes only 124/300 captchas cor-
rectly. We could probably improve the performance
by applying better pre-processing noise reduction al-
gorithms but given the current accuracy without it,
this was not necessary.

We trained Decaptcha on four different sets of
data to construct four distinct models from which we
could evaluate how many captchas and samples were
needed to achieve good accuracy. The first model,
3x100, uses 100 samples of three captchas that were
selected to ensure that each of the 10 digits appears
in at least one of the three captchas. The second
model, 3x500, uses 500 samples of the same three
captchas. The third model, 6x100, uses 100 samples

however the reader is invited to verify our claims by testing an
online version available here: http://www.dontrythisathome.
com/decaptha

http://www.dontrythisathome.com/decaptha
http://www.dontrythisathome.com/decaptha

Model Acc Prec Cov
Decap 10x50 44.0% 55% 80%
Decap 25x20 76.0% 95% 80%
Decap 50x10 72.0% 90% 80%

Table 2: Performance of the 500-sample models on
25 new captchas.

N Sphinx Sphinx-d Decap Decap-d

2 2.0 2.1 88.2 87.7

5 4.7 4.8 98.8 98.9
10 8.5 8.8 99.9 100.0
50 25.4 27.7 100.0 100.0
100 35.6 43.1 100.0 100.0

Table 3: Model accuracies when considering N ad-
ditional samples of each captcha. The Sphinx and
Decaptcha models are the best ones from Table 1.

of six different captchas, with each digit appearing
at least two times. The fourth model, 8x1000, uses
1000 samples of eight captchas, with each digit ap-
pearing at least three times.

Table 1 shows the performance of these four mod-
els. All models produce some response for 81.3% of
the captchas®. The smallest model, trained on only
600 samples, gets 65.7% of these captchas correct,
while the largest model, trained on 8000 captchas,
gets 92.3% of them right. Interestingly, the 6x100
model outperforms the 3x500 model (59.6% to 65.6%)
even though the latter model was trained with two
and a half times more data.

Based on this observation, we hypothesized that
a training set with a few samples of many captchas
would be better than a training set with many sam-
ples of few captchas. To verify this, we trained De-
captcha on three additional training sets: 10 captchas
with 50 samples each, 25 captchas with 20 samples
each, and 50 captchas with 10 samples each. These
models were then evaluated on 25 new captchas col-
lected for this purpose. Table 2 shows that accuracy
and precision seem to peak with around 20 samples of
25 captchas. This suggests that we can get away with
annotating only 25 captchas, as long as we collect at
least 20 variants of each.

Overall, Decaptcha provides a strong attack capa-
bility — it would produce 750 successful registrations
for 1000 downloaded captchas.

5The models have identical coverage because the decompo-
sition depends not on the training captchas but on the manu-
ally set parameters which were the same for all models.

Threat Model 1Ps Reg/day
Low Sphinx 1,500 150
Medium Sphinx 10,000 1,000
High Decaptcha 10,000 75,100
Advanced Decaptcha 94,335 708,456

Table 4: Estimated number of registrations per day
for various threat models, using the best Sphinx and
Decaptcha models, and assuming a limit of 10 audio
captcha downloads per IP per day.

Abusing redundancy. While the Decaptcha model
uses multiple samples of each captcha during training,
neither it nor the Sphinx model takes advantage of
this redundancy to improve their performance. Intu-
itively, however, this redundancy should be useful: if
the model is unable to guess a captcha, it may still be
able to guess it with a second or third sample. Thus,
we consider two approaches to exploiting this redun-
dancy at prediction time. In the first case, we look at
N samples of the captcha, guess sequences from these,
and then select the most frequently guessed sequence
as our response. In the second case, we again guess
sequences for N samples, but this time look at the
digits individually, selecting the most frequent digit
found at each position.

Table 3 shows the results of allowing models to use
additional samples of each captcha. The numbers for
each N were produced by running the models on 1000
random samples of size N from the test data, and av-
eraging accuracy across these trials. For all models,
increasing the number of audio samples increases the
model accuracy, and performance seems to be simi-
lar whether selecting the most frequent digits (the -d
models) or the most frequent sequences. Because of
Decaptcha’s high accuracy, it can achieve a 13 point
boost in accuracy (from 75.1% to 88.2%) by simply
looking at two samples per captcha instead of one.

Registrations per day. Table 4 shows the esti-
mated number of registrations per day various at-
tackers could achieve, making the conservative as-
sumption that a limit of 10 audio captchas per IP
per day was imposed. Under this scenario, a low
threat attacker using off-the-shelf software and Tor
to supply IP addresses could likely get only 150 reg-
istrations per day. Increasing the IP pool could yield
about 1,000 registrations per day for a Medium threat
attacker, while building a tool like Decaptcha could
yield tens or hundreds of thousands of registrations
per day. These results suggest that a low knowledge
attacker with only a small TP pool is probably not

Samples
Err DL 1 2 3 4 5
1 10| 5.7 37 27 1.9 2.0
1 20| 86 63 5.0 4.6 3.9
1 50 |11.5 9.1 10.8 104 9.5
1 100 | 12.0 10.0 159 18.9 18.0
1 200 | 12.0 10.1 189 299 32.7
2 10 7.2 4.3 2.8 2.0 2.0
2 20| 13.0 84 56 4.9 4.0
2 501|214 156 14.2 11.6 9.9
2 100 | 23.8 19.6 252 23.6 19.7
2 200 1| 23.9 202 355 432 388

Table 5: Average number of captchas broken by De-
captcha by distinct IP when an IP address is refused
after Err errors, and after DL downloads.

a substantial threat for eBay. However, large num-
bers of fake registrations could be produced by low
knowledge attackers with larger IP pools, or attackers
capable of developing a Decaptcha-like tool.

5 Mitigation

As mentioned previously, the most straightforward
strategy for eBay to reduce the number of captchas
that can be solved by an attacker would be to limit
both the number of captcha downloads allowed to
each IP address (download limit) and the number of
times an IP address is allowed to submit an incorrect
response (error limit).

To evaluate how this mitigation would improve the
situation, we analyzed if it would be beneficial for
the attacker to download additional samples of the
same captcha, rather than always trying to guess the
captcha from a single sample. We ran 100,000 simu-
lations where the model classified as many captchas
as it could before hitting either the download limit or
the error limit. Table 5 shows the average number of
captchas broken for each set of parameters.

In almost all cases, we found that it is more efficient
to use only a single sample of each captcha. How-
ever, when the IP is banned after the first captcha
error, and when a relatively large number of down-
loads per IP are allowed (e.g. 100), more captchas
can be solved by exploiting extra samples. This corre-
sponds to our intuition that when there is a high cost
for failing on a captcha, the added accuracy from the
additional samples will be useful. Still, under most
conditions, using a single sample is the optimal strat-
egy, so allowing the download of multiple samples of

the same captcha is only an issue because it allows
the attacker to easily construct a training corpus.

We can’t determine the exact threshold eBay
should use to thwart attackers while not preventing
real users from registering because we don’t have ac-
cess to the necessary eBay statistics. However, this
table suggests that the best mitigation technique is to
reduce the number of attempts that a user is allowed
before the system is locked. A less efficient but less
drastic mitigation is to limit the number of captchas
by IP. Enforcing a limit of 10 attempts, which seems
reasonable, will prevent the attacker from registering
more than 10 times with the same IP. Of course im-
plementing these mitigations is not a substitute for a
good captcha system but it helps to restrain the at-
tacker. In particular these restrictions will force the
attacker to use multiple IPs which will increase the
attack entry cost.

Another mitigation technique would be to use vari-
able length captchas: this would prevent the attacker
from discarding the captchas that do not have the
correct number of digits, and would make tuning the
segmentation more difficult.

6 Additional Related Work

The first discussion of the captcha idea appears in
[12], though the term CAPTCHA was coined in [16].
Text/image based captchas have been studied exten-
sively [9, 10, 2] and there is a long record of success-
ful attempts at breaking captchas of popular sites [3].
For example in March 2008, a method to break 60%
of MSN visual captchas was disclosed [18]. One of the

v
I

most famous visual captcha breakers is PWNtcha [7].

7 Conclusion

Our tool Decaptcha can break 75% of eBay audio
captchas by analyzing energy peaks. Enforcing lim-
its on downloads or incorrect answers can slow the
attack, but truly countering Decaptcha will require
more difficult captchas. However, increasing the dif-
ficulty of audio captchas for machines may also in-
crease the difficulty for humans. Thus, we are plan-
ning an study to evaluate the difficulty of differ-
ent types of audio captchas for both humans and
machines, with a particular eye towards how audio
captchas are solved by non-native speakers.

References

[1]

[7]

8]

[9]

[10]

[11]

Leyla Bilge, Thorsten Strufe, Davide Balzarotti,
and Engin Kirda. All your contacts are belong
to us: Automated identity theft attacks on so-
cial networks. In 18th International World Wide
Web Conference (WWW 2009), 2009. 1

K Chellapilla and P Simard. Using ma-
chine learning to break visual human interaction
proofs. In MIT Press, editor, Neural Information
Processing Systems (NIPS), 2004. 6

Dancho Danchev. Microsoft’s captcha success-
fully broken. blog post http://blogs.zdnet.
com/security/?p=1232, May 2008. 6

Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: The second-generation onion
router. In In Proceedings of the 13th USENIX
Security Symposium, pages 303-320, 2004. 3

Anne Eisenberg. New puzzles that
tell humans from machines. http:
//www.nytimes.com/2009/05/24/business/
24novelties.html?_r=1&ref=technology,

May 2009. 1

Julian B. Grizzard, Vikram Sharma, Chris
Nunnery, Brent ByungHoon Kang, and David
Dagon. Peer-to-peer botnets: Overview and case
study. In USENIX Workshop on Hot Topics in
Understanding Botnets (HotBots), 2007. 3

Sam Hocevar. Pwntcha captcha decoder. web
site, http://sam.zoy.org/pwntcha. 6

jochem. devoicecaptcha. web site

http://vorm.net/captchas, 2006. 4

P Simard K Chellapilla, K Larson and M Cz-
erwinski. Building segmentation based human-
friendly human interaction proofs. In Springer-
Verlag, editor, 2nd Int’l Workshop on Human
Interaction Proofs, 2005. 2, 6

P Simard K Chellapilla, K Larson and M Cz-
erwinski. Designing human friendly human in-
teraction proofs. In ACM, editor, CHI05, 2005.
6

C. Kreibich, C. Kanich, K. Levchenko, B. En-
right, G. Voelker, V. Paxson, and S. Savage.
Spamcraft: An inside look at spam campaign
orchestration. In USENIX, editor, LEET, 2009.
3

[12]

[14]

[15]

[16]

[17]

[18]

Moni Naor. Verification of a human in the loop
or identification via the turing test. Available
electronically: http://www.wisdom.weizmann.
ac.il/~naor/PAPERS/human.ps, 1997. 1, 6

Phillip Porras, Hassen Saidi, and Vinod Yeg-
neswaran. An analysis of conficker’s logic and
rendezvous points. Technical report, SRI, 2009.
3

Rubén Santamarta. Breaking gmail’s audio
captcha. Web site : http://blog.wintercore.
com/, March 2008. 1, 2

Jennifer Tam, Jiri Simsa, Sean Hyde, and Luis
von Ahn. Breaking audio captchas. In Advances
in Neural Information Processing Systems, 2008.
1,4

L. von Ahn, M. Blum, N. J. Hopper, and
J. Langford. Captcha: Using hard ai problems
for security. In Sringer, editor, Furocrypt, 2003.
6

Willie Walker, Paul Lamere, Philip Kwok, Bhik-
sha Raj, Rita Singh, Evandro Gouvea, Peter
Wolf, and Joe Woelfel. Sphinx-4: A flexible open
source framework for speech recognition. Sun
Microsystems Technical Report, (TR-2004-139),
November 2004. 2, 4

Jeff Yan and Ahmad Salah El Ahmad. A low-
cost attack on a microsoft captcha. Ex con-
fidential draft http://homepages.cs.ncl.ac.
uk/jeff.yan/msn_draft.pdf, 2008. 2, 6

Li Zhuang, John Dunagan, Daniel R. Simon, He-
len J. Wang, Ivan Osipkov, Geoff Hulten, and
J.D. Tygar. Characterizing botnets from email
spam records. In Usenix, editor, LEET, 2008. 3

http://blogs.zdnet.com/security/?p=1232
http://blogs.zdnet.com/security/?p=1232
http://www.nytimes.com/2009/05/24/business/24novelties.html?_r=1&ref=technology
http://www.nytimes.com/2009/05/24/business/24novelties.html?_r=1&ref=technology
http://www.nytimes.com/2009/05/24/business/24novelties.html?_r=1&ref=technology
http://sam.zoy.org/pwntcha
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.ps
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.ps
http://blog.wintercore.com/
http://blog.wintercore.com/
http://homepages.cs.ncl.ac.uk/jeff.yan/msn_draft.pdf
http://homepages.cs.ncl.ac.uk/jeff.yan/msn_draft.pdf

	1 Introduction
	2 Background
	3 Scraping
	4 Breaking CAPTCHAs
	5 Mitigation
	6 Additional Related Work
	7 Conclusion

