
Multiple-Sites Defense Strategy

Elie Bursztein
LSV, ENS Cachan, CNRS, INRIA, France

eb@lsv.ens-cachan.fr

Abstract

The anticipation game framework is an extension of at-
tack graphs based on game theory. This framework is used
to analyze network incident scenarios, such as intrusion,
and to find the best strategies associated to it. In this pa-
per we present an extension to anticipation games to deal
with multiple sites analysis. This extension is needed to
find strategies that involve inter-sites communication and
to model scenarios where a discrete timeline of events
is required. To illustrate this extension, we present how
multiple-sites defense can be used to mitigate a zero day
attack. We prove that this extension is decidable and does
not change the anticipation game complexity. Finally we
evaluate the ability of anticipation game to analyze com-
plex multiple-site defense with our implementation called
NetQi.

1 Introduction

As networks of hosts continue to grow, evaluating their
vulnerability to attacks becomes increasingly more impor-
tant. When evaluating the security of a network, it is not
enough to consider the presence or the absence of pub-
lic vulnerabilities. Inevitably, a large network will contain
undisclosed vulnerabilities that can be the target of undis-
closed attacks called zero day exploits. To setup a defense
strategy that mitigates this kind of attack, multiple-sites de-
fense needs to be considered.
Using network topological information along with other in-
formation such as average deployment cost and time, an an-
alyst can produce an anticipation game.The anticipation
game framework [7] is an extension of attack graphs based
on game theory [14] and more specifically on TATL [15]
(Timed Alternating-time Temporal Logic). Using a timed
game allows to model player actions on the network. An
anticipation game is described by an initial state and one
set of timed rules for each player. Instead of using a state
reachability property as analysis goal, it uses strategy objec-
tives. Strategy objectives permit the expression of analysis

goals such as: what is the most efficient patching strategy.
It can be intuited as finding every execution that leads to the
desired result and then selecting among them the one that
fulfills the best player objectives in term of cost, reward,
and time. This is possible because anticipation games take
into account the notion of action cost, time, and reward.
Rewards are based on network service value. Therefore it is
also possible to define strategy objectives that will find the
worst attack against the network.

1.1 Motivation

Anticipation games can serve as a basis for attack an-
ticipation, defense strategy analysis and forensic analysis.
To motivate our extension of the framework we discuss the
potential applications of this extension. zero day attack
cannot be mitigated by the use of an intrusion detection
system based on misuse detection, or patching because
they are by definition undisclosed. A way to be aware that
such undisclosed attacks occur is to rely on other sites to
be alerted when they are hit by an unknown attack. A
common security practice is to use a dedicated trap net
called a honey-net for this purpose. A honey-net will issue
an alert when an unknown attack is used against one of its
services. This alert will then be used by real sites to take
counter-measures, such as denying the intruder’s IP in their
firewalls.

Modeling a multiple-sites strategy cannot be done in at-
tack graphs and the current anticipation games framework,
because some rules and strategies need to be restrained to
specific set of services, whereas other need to be global to
model inter-sites communication. For example, patching
rules should not be applied to honey-net network. That
is why location restriction needs to be introduced in the
framework. Moreover dealing with a zero day exploit
requires taking into account the vulnerability cycle time-
line. This is not possible without the location restriction.
Mass-scale attacks such as worms can also be detected
through sites cooperation. Without our extension they
cannot be modeled in anticipation games either because

1

they require a timeline of events and rules restriction as
well. Theses two applications also require the modeling of
the notion of cost by unit of time. In the zero day attack
case, monitoring a honey-net costs money on a daily basis.
In the mass-scale attack case, service unavailability causes
a loss of income based on the duration of the unavailability.
To model this type of cost, we extend anticipation games
with penalties. Intuitively a penalty is a cost added for each
unit of time a constraint holds. This extension also allows
us to model an other important relation between time and
cost: cost diminishing. A cost diminishing occurs when
the same action is executed multiple times. It also occurs
when an on-going process is done for an extended period.
e.g service monitoring.

Finally this extension allows us to model player’s si-
multaneous actions and event branching. Simultaneous ac-
tions are mandatory to model that every site takes the same
counter-measure simultaneously when a zero day attack is
detected by the honey-net. It can also be used to model the
massive deployment of a patch. Event branching is used to
model that at a certain point, several options are available to
the player, such as using one kind of patch or an other.

1.2 Our contribution

The main contribution of this paper is an extension of
the anticipation game framework to model multiple-sites
interaction. This extension is three fold.

First, locations are introduced in order to control the
scope of rules and strategies. Secondly the use of a discrete
timeline of events is introduced to model causal relations
between events. For example, a discrete timeline of
events can be used to model that a vulnerability is reverse
engineered only after it has been caught on a honey
pot. Thirdly we extend the framework to model the relation
that exists between cost and time. We add the notion of
penalty to model costs that are time dependent and costs
that diminish over time.

To illustrate how this extension is used to model
multiple-sites interaction, the running example presented in
this paper discusses a multiples-sites defense strategy that
uses a honey-net against various types of exploits including
zero day ones.

We prove that anticipation games with locations and
penalties are decidable and that the complexity of the model
remains EXPTIME-complete. This extended anticipation
games framework has been implemented into an freely
available tool called NetQi [6] to evaluate the effectiveness
of the approach. In the evaluation section we show that it is

possible to analyze complex multiple-sites scenarios.
The reminder of this paper is organized as follows. In

Sect. 2, we will survey related work and in Sect. 3 we re-
call what an anticipation game is. We also detail the game
example that is used as a guideline for the rest of the pa-
per. Sect. 4 presents the notion of locations. In Sect 5 the
discrete timeline of events is illustrated. Sect. 6 introduces
the notion of penalty and cost diminishing. Sect 7 covers
the multiples-sites defense strategies that were found by an-
alyzing the running example with NetQi. In sect. 8 we
evaluate NetQi performance. We conclude in Sect. 9

2 Related Work

Attack graphs are a very active field pioneered by
Schneier [32, 33] and Kuang and al [41]. Model checking
for attack graphs was introduced by Ammann and Ritchey
[30]. They are used to harden security [25]. Various
methods have been proposed for finding attack paths, i.e.,
sequences of exploit state transitions, including logic-based
approaches [28, 36, 17, 35], and graph-based approaches
[41, 37, 24]. Researchs have also been conducted on formal
languages to describe actions and states in attack graphs
[12, 38]. Some rely on grammars [39], some have a more
practical focus [11], or specialize on IDS alert correlation
[23]. Some authors propose techniques that allow attack
graphs to scale to large networks [16, ?]. Security metrics
[26] have been developed, and supporting tools such as
NetSPA [3] or Sheyner’s tool [36] now exist.

The SIR model, which is similar to the compromising
recovery cycle, is used to study the propagation of epi-
demics in biology [10]. Biological models for computer
security were proposed recently [31]. As in computer
virus propagation research [5, 40], biological models
are an inspiration of anticipation games. The antibody
(administrator) fights the disease (Intruder) to main-
tain the body alive (the network). Following this intuition,
using games to capture this fight interaction appears natural.

Games have become a central modeling paradigm in
computer science. In synthesis and control, it is natural to
view a system and its environment as players of a game
that pursue different objectives [9, 27]. In our model,
the intruder attempts at causing the greatest impact on
the network whereas the administrator tries to reduce it.
Such a game proceeds for an infinite sequence of rounds.
At each round, the players choose actions to play, e.g.,
patching a service, and the chosen actions determine the
successor state. For our anticipation games we need, as
in any real-time system, to use games where time elapses
between actions [22]. This is the basis of the work on timed
automata, timed games, and timed alternating-time tempo-

2

ral logic (TATL) [15], a timed extension to alternating-time
Kripke structures and temporal logic (ATL) [2]. The TATL
framework was specifically introduced in [14].

Timed games differ from their untimed counterpart in
two essential ways. First, players have to be prevented
from winning by stopping time. More important to us is
that players can take each other by surprise: imagine that
the administrator attempts to patch a vulnerable service,
and this will take 5 minutes, it may happen that intruder is
in fact currently conducting an attack, which will succeed
in 5 seconds, nullifying administrator action. Second
(this is allegedly more technical), a player cannot win
by preventing time from diverging, i.e., from eventually
tending to infinity [34]. Average reward games considered
in TATL framework are considered in [1], but with the time
move duration restricted to either 0 or 1. ATL was also
extended to simply timed concurrent game structure [18].
Game strategies have been used to predict players actions
in numerous domains ranging from economy to war [4, 29].

The notion of cost diminishing appears in [13]. The use
of games for network security was introduced by Lye and
Wing [20]. The anticipation game framework was presented
by Bursztein and Goubault-Larrecq [7] and network strate-
gies for anticipation games were detailed in [8]. Finally the
first use of game theory for denial of service was done by
Mahimkar and Shmatikov [21].

3 Anticipation Games

A key difference between standard timed games [14] and
anticipation games is the dual-layer structure used in an-
ticipation games. Anticipation games lower-layer is called
Network Layer, and is used to represent network informa-
tion. The upper-layer is called Attack Layer and is a reg-
ular TATL game structure used to model the network state
evolution induced by players actions. Anticipation games
can be intuited as a graph of graphs (see diagram 1) where
the lower graph is the network state and the above graph de-
scribes the transition between one network state to an other.

Anticipation games players are called administrator
and intruder and their actions are modeled by timed
rules.Typical actions range from patching, to exploiting a
vulnerability, to firewalling a service. They are called timed
rules because a rule execution requires a certain amount of
time to be executed. Each Attack Layer transitions repre-
sent the execution of one rule. An anticipation games path
is called a play. More formally a play is a path (a sequence
of action and states) ρ : s0r0s1r1... where ∀j : sj

rj→ sj+1,
sj and sj+1 are network states, and rj is the rule used to
make the transition.

The main purpose of anticipation games with strategies

Figure 1. Anticipation games intuitive repre-
sentation

is to find, given a network initial state and a set of rules,
the best strategy that fulfills player objectives by model-
checking the Attack Layer and comparing the outcome of
each play that fulfills strategy constraints. Hence a player
strategy is the play that satisfies the most player strategy
objectives in term of cost, reward and time.

3.1 Network Layer

The Network Layer is composed of two parts. First the
Dependency Graph which is the graph that represents the
dependency relations that exist in the network. It is meant
to be static and does not evolve over game execution. Sec-
ondly a finite set of states associated to each Dependency
Graph vertex that describes the current network state.
This set of states is meant to evolve over game execution.
Typical states range from vertex vulnerability, to vertex
public accessibility, to vertex compromising. A state is
a Boolean value. More formally, let A be a finite set of
so-called atomic propositions A1, . . . , An, . . . , denoting
each base property. Thus each atomic proposition is true or
false for each of Dependency Graph vertices.

The Dependency Graph used as an example is repre-
sented in diagram 2 and the corresponding set of states is
represented in the array 3. This Dependency Graph uses
the concepts of locations and of discrete timeline of events
introduced later in the paper.

3.2 Dependency Graph

This Dependency Graph is composed of six real vertices
and a virtual one (vertex 1). The edges are the dependen-
cies that exist between services. Concrete dependencies are
represented with a plain line and virtual dependencies used

3

Figure 2. Dependency Graph

for the discrete timeline of events with a dashed line. The
role of the virtual vertex and its incoming dependencies is to
model the discrete timeline of events as detailed in section
5. Concrete dependencies are used to model that a service
is dependent on another. In our example the vertex www
(5) depends on the vertex DB (6) for user authentication.
From a security perspective it means that if the vertex DB
(6) is unavailable by collateral effect the vertex www (5)
will be also unavailable. It also means that the trust rela-
tion that exists between those two vertices may be exploited
by an attacker. These dependencies are used in game rules
to model collateral effects and trust abuse. The three de-
pendencies from the company’s network services to their
twins services located in the honey network are used for the
multiple-sites defense purpose. The company’s services de-
pend on honey-net fake services to defeat a zero day attack
as exemplified in section 7.

3.3 Set of states

The complete set of states mapping used in the ex-
ample can be divided into three parts. The first part
is sets 0DayAvail, CustomAvail, PubAvail and
PatchAvail which are used to model the discrete time-
line of events as detailed in section 5. The second part is sets
Detected and Monitored which are used for multiple-
sites defense purpose (see section 7). And finally the third
part is used to describe the network original state. More
specifically the set Vuln is used to say that the company
DB service and its fake twin service on the honey-net are
vulnerable to an unknown vulnerability at the beginning of

States 1 2 3 4 5 6 7
ρ(0DayAvail) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
ρ(CustomAvail) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
ρ(PubAvail) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
ρ(PatchAvail) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
ρ(Detected) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
ρ(Monitored) ⊥ > > > ⊥ ⊥ ⊥
ρ(Vuln) ⊥ ⊥ > ⊥ ⊥ > ⊥
ρ(Compr) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
ρ(Public) > > > > > > >

Figure 3. Set of states

the game. The set Compr is used to say that no service is
compromised at the beginning of the game. Finally the set
Public is used to indicate that every service is public (not
firewalled).

3.4 Attack Layer

TATL [15] extends ATL [2] with the notion of timed
game. This is done by adding time cost to transitions. From
the network security perspective this is important because
it means that player actions on a network require a certain
amount of time to be executed. This prevents meaningless
strategies such as being able to patch every network vul-
nerability in an instant. Hence an anticipation game can be
viewed as a race between players where the fastest wins. As
presented in [14], this time race introduces in the game the
element of surprise. For example the intruder can take the
administrator by surprise if he can exploit a vulnerability
faster that the administrator can patch it. This is coherent
with real network security where you cannot foresee what
attacker will come up next.

3.5 Rules of the game

Legal actions for each player are described by a set of
timed rules. Each rule is of the form:

Γx : Pre F
∆, p, a, c
−→ P

where F is the set of preconditions that need to be satis-
fied in order to use the rule. ∆ is the amount of time needed
to execute the rule, p is the player that uses the rule, a is
the rule label (string), and c is the rule cost. P is the rule
post-condition, that states rule effects. It is required for
F preconditions to hold not just when the rule is selected,
but also during the whole time it takes the rule to actually
complete (∆ time units). Γx is the rule location. Anticipa-
tion games use two types of rules [8]. The granting rule

4

that uses the =⇒ double arrow and the regular rule that
uses the−→ single arrow. A granting rule allows the player
to receive a reward based on the target Dependency Graph
vertex value when the rule is successfully executed whereas
regular rule does not grant any reward. Regular rules are
used for temporary actions and for the discrete timeline of
events. For example the following rule is used to model
trust abuse attack:

Γ : Pre ♦Compr ∧ ¬Compr 2,I,Trust abuse, 200
=⇒ Compr

It says that the intruder (I) can compromise a non com-
promised (¬Compr) vertex by exploiting a trust relation if
one of its successors is compromised (♦Compr) in 2 units
of time for a cost of $200. The ♦ is a modal operator used
to speak of Dependency Graph successors. The other oper-
ators used in rule preconditions and effects are standard S4
operators. If the intruder chooses to use this rule, then to
have a successful rule execution it is required that the pre-
conditions are fulfilled when he chooses to apply the rule,
and also after the 2 units of time required to complete it.
This is mandatory because the network state might evolve
due to administrator actions during these 2 units of time.
For example the administrator might clean the successor
vertex. In this case, the intruder is taken by surprise, and
the compromise rule fails.

4 Location

In anticipation games a rule can be applied to any De-
pendency Graph vertex as long as its set of states conditions
meets the rule preconditions requirements. However in
many cases such behavior is not suitable. In particular it
is not possible to perform multiple-sites defense analysis
without restricting the scope of rules. This impossibility
is mainly due to the fact that for this type of analysis three
type of rules are needed the transitive ones, the local
ones, and the global ones. Transitive rules are used to
model inter-site interaction. Local rules are used for site
specific action. In our example the rule used to model
trust abuse attacks needs to be restricted to company’s
network, and discrete timeline of events rules to the virtual
location. Finally global rules are meant to be used on any
vertex. Similarly strategies objectives need to be restricted
to a given set of vertices. In our example : finding a
defense strategy that prevents service compromising should
obviously not apply to honey-net fake services.

In order to restrict rules and strategy objectives to a given
set of vertices, we extend anticipation games with locations.
Intuitively a location is a group of services that belongs to

the same site. More formally a location is a set of Depen-
dency Graph vertices represented by an integer. Location
integer is added to every Dependency Graph vertex as a la-
bel. Locations are specified in rules and strategy objectives
to restrict their scopes.

4.1 Type of Rule

We use the set of an operational rules depicted in figure
4 in the example. We speak of operational set because it
is used to model attack and defense actions. At the oppo-
site the set of timeline rules depicted in section 5 is used
to model timeline events. This operational set combines
the three types of rules to model multiple site defense. The
three type of rules are more formally defined as:

Definition 1. (Global rule) A rule is global if no location
restriction is specified.

Definition 2. (Local rule) A rule is local if the same loca-
tion restriction is specified for the rule target vertex and the
rule target successor vertex.

Definition 3. (Transitive rule) A rule is transitive if a dif-
ferent location restriction is specified for the rule target ver-
tex and the rule target successor vertex.

4.2 Global Rules

The first three rules are comparable, as they model the
same action: an intruder (I) that exploits a remote service
vulnerability to compromise a public service. The rule pre-
conditions ensure that the target service is vulnerable (V uln
has to be true) and remotely accessible (Public has to be
true). The rule effects when the execution is successful
is that the vertex becomes compromised (Compr become
true). Since these rules are meant to attack fake and real
services they are global (Γ has no index). They differ be-
cause due to the events timeline, they are available at a dif-
ferent time. For the rest of the paper we use the standard
anticipation games modal operator ♦ to speak of regular de-
pendency and ♦� to speak of a timeline dependency. They
both denote the same anticipation games modal operator ♦
and this distinction is only made to improve rule readability.
The 0Day exploit is released first, then the custom exploit
and finally the public exploit. For instance 0DayAvail is
set to true for the virtual vertex by a timeline rule after 48
hours. This set is used to prevent the intruder from using it
earlier in the game. Accordingly the Custom exploit can-
not be used before it is available because until then, the
CustomAvail is set to false for the virtual vertex. The cost
of the three rules also differs from modeling that research-
ing a vulnerability is more costly than making a custom ex-
ploit which is more costly than simply using a public ex-
ploit. The conjunction of cost and timeline allows to model

5

1) Γ: : Pre : ♦�0DayAvail ∧ V uln ∧ Public ∧ ¬Compr
=⇒ 3, I, 0 day exploit, 20000
Effect : Compr

2) Γ: : Pre : ♦�CustomAvail ∧ V uln ∧ Public ∧ ¬Compr
=⇒ 4, I, Custom exploit, 2000
Effect : Compr

3) Γ: : Pre : ♦�PubAvail ∧ V uln ∧ Public ∧ ¬Compr
=⇒ 7, I, Public exploit, 200
Effect : Compr

4) Γ3:3 : Pre : ¬Compr ∧ ♦Compr
=⇒ 2, I, Trust Abuse, 200
Effect : Compr

5) Γ1:1 : Pre Monitored ∧ Compr ∧ ¬Detected
−→ 1, A, Attack Detected, 2000
Effect Detected

6) Γ2:2 : Pre ¬V uln ∧ ¬Public
−→ 1, A, Unfirewall, 100
Effect Public

7) Γ3:2 : Pre ♦Detected ∧ V uln ∧ Public
−→ 0, A, Firewall, 100
Effect Public

8) Γ3:1 : Pre ♦�PatchAvail ∧ V uln
−→ 6, A, Patch, 500
Effect ¬V uln

Figure 4. Set of rules used to model a players
action

the trade-off between the advantage awarded by an undis-
closed vulnerability exploit and the investment required to
find it.

4.3 Local Rules

The rules 4, 5, and 6, are local rules. Their Γ index is
of the form n : n where the first n is the vertex location
and the second n is the successor location. The rule 4 says
that if a service is not compromised (¬Compr) and if one
of its successor is compromised (♦Compr) then it can be
compromised by the intruder (I) in 2 hours for $200. This
rule must be local because otherwise erroneous actions are
possible. As visible in the diagram 2 a dependency exists
between each company’s service and its corresponding
honey-net service. When the trust abuse rule is not re-
stricted to a local scope these relations can be used for trust
abuse. As a result a compromised honey-net service can
be used to compromise a company’s service by trust abuse,
which is clearly an erroneous action. That is why this rule
needs to be restricted to the company’s network context
to be executed only on services where real trust relation
exists.
The rule 5 is local to the honey-net network. It states
that if a service is monitored (Monitored), compro-

mised (Compr) and an alert has not been already raised
(¬Detected) then an alert is raised. The time required to
trigger the rule also includes the alert propagation time in
order to achieve simultaneous service firewalling execution
as explained in section 5. The Monitored set is used
as detailed in section 6 to compute monitoring ongoing
process cost.
The rule 6 is local to the company’s network because since
the firewall rule applies only to the company’s network this
one should only apply to it as well. It states that if a service
is not public (¬Public) and not vulnerable (¬V uln) then it
can be made public (Public).

4.4 Transitive Rules

Rules 7 and 8 are transitive rules. Their Γ index is of
the form n : m where n is the vertex location and m the
successor location. They are used for multiple-sites inter-
action. In the example there are two kinds of such interac-
tions. First the interaction between the honey-net (location
2) and the company’s network (location 3). This interaction
allows the company’s network to defend itself against un-
known attacks by firewalling a company’s service when the
corresponding honey-net service experience an attack. This
interaction is described by the rule 7 which states that if an
attack is detected on a remote location (♦Detected) and the
vertex is public (Public) and vulnerable (Vuln) then it can be
firewalled by the administrator. The location restriction en-
sures that only company’s network will be affected by the
rule. It also ensures that the successor belongs to the honey-
net.
The other transitive rule is the patching rule. It is restricted
to the company network location because honey-net ser-
vices are not meant to be patched. Its successor has to be
the virtual location because this is where the discrete time-
line of events evolves. The timeline information is needed
to know when the patch is available. This rule can only be
transitive: if it is global, it can be applied to honey-net and
if it is local it does not work because the discrete timeline
of events evolution take place in the virtual location.

4.5 Strategy with location

The strategy tuple is extended with a 5th optional compo-
nent used to add strategy locations constraints. These con-
straints allow us to restrict or exclude locations from strat-
egy scope. For instance, excluding a location is used in the
example to find a defense strategy for every sites except the
honey-net. These defense strategy objectives are defined as:

S : (Defense strategy, Admin,MIN(Cost) ∧
MAX(OCost), OCost > Cost,�¬Compr,¬2)

6

They are used to find the play that maximizes intruder
cost, minimizes the administrator cost and ensures that no
service in every location except the honey-net location (¬2)
is ever compromised (�). Adding the opponent cost max-
imization objective aims at finding the (weakly) dominant
strategy: The strategy that beats every opponent strategy
(strict dominance) or at least maximizes the number of
strategies beaten (weak dominance). It can be intuited as
finding the play where the opponent plays his best game.
Since the number of locations is finite it is possible to re-
place this strategy by n strategies where n is the number
of locations to consider. However this is less readable and
having a single strategy leads to serious performance im-
provement, due to early cuts, as detailed in section 8.

Lemma 1. Anticipation games extended with locations are
decidable.

Proof. Suppose that for each location λx, a set of states σx

is added. Locations are used in three game components: de-
pendency graph vertex, rule and strategy. Each dependency
graph vertex is bounded to a given location. This binding
can be done by encoding location in σn sets where n is the
number of location present in the game. The encoding is
done by initializing the set sigmax/x < n to true for each
vertex that belongs to the location λx and false otherwise. In
a rule a location restriction can be applied to target node and
target successor. The node restriction to location λx can be
enforced with sigman sets by adding to the preconditions
the extra precondition that σx is true for local and transi-
tive rules. This extra precondition can be added because
the lower layer modal logic allows the use of the standard
conjunction operator. Similarly successor location restric-
tion to location λx can be enforced with σn set by adding in
preconditions the extra precondition ♦σx for local and tran-
sitive rules. Restricting a strategy to the location λx can be
done by testing that ρ(λx) is true for each node before ver-
ifying the strategy constraints. If it is false, the node is not
considered. Hence, it is sufficient to add λn sets to a game
to encode location. There are a finite number of locations
because by definition there is a finite number of vertices in
dependency graph, and a location contains at least one ver-
tex. Therefore the number of set λn added is finite. By the
theorem of [7] an anticipation game with a finite number
of sets is decidable. It follows that anticipation game with
locations is decidable.

5 Using a Discreet Timeline of Events

Being able to model a discrete timeline of events is
mandatory because many network security scenarios need
it. For instance the classical vulnerability cycle [19] follows
a discrete timeline of events: the patch for a given flaw is de-
veloped only after the vulnerability is either reported,

or caught in the wild and reverse engineered. Similarly an
attack can be detected by a misuse IDS only after its
signature has been added to the database. Such a discrete
timeline of events can be modeled in anticipation games by
using a combination of rules, states and dependencies. The
key idea is to add a virtual vertex in the dependency graph
that is used to model the discrete timeline of events evolu-
tion thanks to a set of states. An additional set of depen-
dencies from real services to this virtual vertex is added in
order to be able to use discrete timeline of events state in
rule preconditions and effects (as in the Dependency Graph
depicted in figure 2). Locations are used to ensure that the
virtual vertex is the only one used in discrete timeline of
events evolution rules. Otherwise, every timeline rule will
apply successively to every vertex leading to an erroneous
strategy.

5.1 Discreet Timeline of Events Illustration

The multiple-site defense example uses a discrete time-
line of events inspired by the standard vulnerability cycle
represented in figure 5.

Figure 5. Vulnerability discrete timeline of
events

To model this discrete timeline of events, four sets and
four rules are needed (figure 6). Intuitively states are used
to model which points have been reached so far and rules
are used to advance in the timeline. One distinct state is re-
quired for each event because states are Boolean values. Ac-
cordingly each state used for the discrete timeline of events
is set to false in initial conditions. The rule execution time
represents the time interval between two consecutive events.
For example the custom exploit is available 14 days after the
vulnerability is discovered (global time), and 12 days after
the zero day exploit (relative time). The availability of the
custom exploit is modeled by the rule 2. This rule states that
if the Custom exploit is not available (¬CustomAvail) and
the zero day is (0DayAvail) then after 288 units of time (12
days) the attacker will have access to custom exploit.

7

1) Γ1:1 : Pre ¬0DayAvail
−→ 48, I, O day exploit Available, 0
Effect 0dayAvail

2) Γ1:1 : Pre ¬CustomAvail ∧ 0DayAvail
−→ 288, I, Custom exploit available, 0
Effect CustomAvail

3) Γ1:1 : Pre ¬PubAvail ∧ CustomAvail
−→ 48, I, Public exploit available, 0
Effect Pub

4) Γ1:1 : Pre ¬PatchAvail ∧ CustomAvail
−→ 48, I, Patch available, 0
Effect 0dayAvail

Figure 6. Set of rules used to model timeline
evolution

5.2 Branching

Using a relative time allows us to model branching. For
example if the timeline presented above is not sufficient,
because one wants to model multiple ways to disclose the
vulnerability and make the custom exploit available, then it
is possible to use multiple rules that have the same effect
but different preconditions, time, and cost. For example to
model that the disclosure is the result of an intrusion caught
by the honey-net and reverse-engineered the following rule
can be used with the proper set of dependencies:

Γ1:2 : Pre Detected
−→ 288, A, Reverse Engineering , 500
Effect CustomAvail

This transitive rule states that if a honey-net service is
compromised then in 12 day the administrator staff is able
to reverse engineer it for a cost of $500. Branching was not
introduced in the example for the purpose of clarity.

5.3 Simultaneous Actions

Another type of discrete timeline of events occurs when
multiple actions take place at the same time. In the multiple-
site defense this occurs when the attack on the honey-net is
caught: every site has to use the firewall simultaneously.
Otherwise the time required to firewall x sites is equal to
x × t where t is the time required to firewall one site. To
have a constant time regardless of the number of sites a state
is used as a validation point. In the example this is the state
Detected. The time required to firewall the site is modeled
by the rule 5 of figure 4. Once this rule is executed the
administrator is able to use simultaneously as many firewall
rules as she wants. This is achieved by setting the firewall
rule time to 0.

6 Linking Cost and Time

In the original anticipation games model with strategies
[8], costs are bounded to rule executions: each time a player
executes a rule, his cost increases. This is a natural way to
model that player action have a cost. However this approach
has a limitation: it does not allow us to model costs that are
time dependent. Such cost exists for on-going processes.
Two well known examples of such on-going processes are
service DOSing (Denial Of Service) [21], and intrusion de-
tection monitoring. The longer they last, the higher the cost
is. To model this type of cost, we extended anticipation
games with penalty. Intuitively a penalty is a cost that is
added for every unit of time a constraint holds on a given
dependency graph vertex. More formally a penalty is de-
fined as follows:

Definition 4. (Penalty) A penalty is the tuple P :
(P,N,C,F) where P is the player targeted by the penalty,
N ∈ N∗ is the Dependency Graph vertex where the con-
straint has to hold, C is the constraint that needs to be
satisfied to trigger the penalty, and F(x) is the function
F(x) : N∗ → N that takes as parameter the integer x which
is the number of units of time elapsed since the penalty has
been triggered and return the corresponding cost.

6.1 Example

To make it clearer, let’s illustrate how penalty can be
used to model a DOS cost. Assume that the Dependency
Graph vertex 5 is a HTTP service used to sell company
products. Every hour, the amount of income generated by
this service is $1000. Therefore for every unit of time the
service is unavailable (¬ Avail) because of the DOS, the
company loses $1000 of income. This can be modeled by
adding the following penalty to the game:

P : (Administrator, 5,¬Avail, add(x) = 1000)

which states that for each unit of time where the vertex
5 (www service), is not available the administrator cost is
increased by 1000. Thanks to this penalty the incident strat-
egy cost minimization objective takes into account the rela-
tion between the loss of income and the time elapsed. In the
example we use the same kind of penalty to compute the
cost associated with the action of firewalling a public ser-
vice. The use of a function based on the number of units of
time elapsed allows us to model various cost models such
as an exponential cost or a diminishing cost as presented
above.

8

6.2 Cost diminishing

Another important time/cost relation to consider is when
the cost diminishes over the time [13]. This reduction oc-
curs when the same action is performed multiple times, or
when an on-going process is run for an extended period of
time.

Performing the same action again and again is a
common practice in network security. For instance the
action of patching similar services or reusing the same
exploit. In this context the cost of the first use is more
expensive than later ones. In the patching case, the first
use is more expensive because it requires to download and
test the patch. In the exploit case, the first use requires the
attacker to develop and test the code whereas subsequent
exploitations only require it to be launched

This type of cost reduction is modeled in anticipation
games by using two rules with different costs and a discrete
timeline of events to ensure that the cheaper rule is only
used after the most expensive one has been used. It is very
similar to modeling simultaneous actions except that it is
cost reduction not time reduction.

Many network security devices such as intrusion detec-
tor and honey pot requires an on-going supervision process.
This cost can be divided into two parts: the implementation
cost and the supervision cost. Implementation cost covers
every cost required to start the process ranging from soft-
ware to hardware to setup and test. The supervision part
covers every recurrent cost such as detection rules update
and alert processing.

The implementation part is modeled in anticipation
games by using an implementation rule whereas the super-
vision part is modeled by a penalty that is triggered by the
successful execution of the implementation rule. To model
a diminishing supervision cost with a lower limit the fol-
lowing penalty can be used:

P : (Administrator, 5,Monitored, cost : x→ int(1000/x)+y)

Where x is the number of time units elapsed, y ∈ N is
the lower bound cost and int(x) the standard function that
returns a rounded integer from a float.

We use two kind of penalties in the example. The first
kind is induced by monitoring honey-net service, we as-
sume that monitoring a honey-net service costs $10 by hour.
Accordingly we add the three following penalties to the
analysis:

P : (Administrator, 2,Monitored, add : 10)

P : (Administrator, 3,Monitored, add : 10)

P : (Administrator, 4,Monitored, add : 10)

The second kind adds penalty cost for each unit of time
a company’s service is not public because of the lack of
income generated. For simplicity we assume that this loss
is equal to $1000 by unit of time for every service.

P : (Administrator, 5,¬Public, add : 100)

P : (Administrator, 6,¬Public, add : 100)

P : (Administrator, 7,¬Public, add : 100)

Lemma 2. Anticipation games extended with penalty are
decidable.

Proof. A penalty can either apply when a state is true or
false for a given vertex. If two penalties exist for the same
condition they can be merged into one by merging their cost
function. Therefore there are at most 2 × n ×m penalties
where n is the number of Dependency Graph vertex and m
is the number of set of states. Since there is a finite number
of Dependency Graph nodes and a finite number of set of
states by definition there is a finite number of penalty. The
number of distinct states for any play is finite because the
number of rules and Dependency Graph vertices are finite.
Therefore an infinite play has a finite number of distinct
states. It follows that if it is an infinite play, it has a loop. A
penalty cost is monotonic, hence each time a penalty applies
it strictly increases cost value. Consequently there are two
possible cases for a given penalty. One: if the cost value
is incremented by the penalty during the first loop iteration,
it will be incremented at every loop iteration and therefore
the cost value diverges. Two: the penalty does not increase
the cost during the first loop iteration. In this case the cost
will never be increased by penalty regardless of the number
iterations. Therefore it is possible to compute the outcome
of an infinite play with penalty in a short finite prefix.

From lemma 1 and lemma 2 it follows that:

Theorem 1. Anticipation games extended with penalties
and locations are decidable

Adding locations and penalties does not change the an-
ticipation games complexity bound:

Theorem 2. Model-checking TATL formula over anticipa-
tion games extended with penalties and locations remain
EXPTIME-Complete

Proof. Locations add at most two tests to each rule there-
fore testing locations add only a linear complexity factor to
rule evaluation. Finding anticipation games strategies re-
quire to evaluate a finite number of states [8]. Or restricting
strategy to a given set of locations requires to perform n
tests for each evaluated state, where n is the number of De-
pendency Graph vertices. Therefore adding locations to a

9

strategy add n × s tests where n is the number of Depen-
dency Graph vertices and s the number of states needed to
decide an anticipation game. Therefore restricting strate-
gies to a set of locations add only a linear complexity fac-
tor. It follows that anticipation games with location remains
EXPTIME-complete.
The number of penalties is finite. Therefore penalties add
at most x × s tests where x is the number of penalties and
s the number of states. Thus penalties add only a linear
complexity factor to anticipation games and therefore antic-
ipation games remain EXPTIME-complete when extended
with penalty. Location and penalty add both linear com-
plexity factor therefore anticipation games extended with
location and penalty remain EXPTIME-complete.

7 Multiple sites Strategies

We use the Dependency Graph, Set of states, and rules
sets presented above to illustrate how multiples-sites de-
fense analysis can be achieved in anticipation games thanks
to strategies. To do so we consider the two following cases.
In the first case the company’s network does not rely on
honey-net information to detect zero day attacks and there-
fore the honey-net is removed from the simulation. In the
second case, the interaction between the honey-net and the
company’s network occurs. This is the exact configuration
described earlier during the paper. For both cases, we run
the analysis to find the following administrator strategy ob-
jectives:

S : (Defense strategy, Admin,MIN(Cost) ∧
MAX(OCost), OCost > Cost,�¬Compr,¬2)

This is the administrator dominant strategy objective as
introduced in 4. Accordingly we analyze the following at-
tacker strategy objectives:

S : (Attack strategy, Intruder,MAX(Reward) ∧
MAX(OCost), Reward > OCost, †Compr)

Theses objectives are used to find the strategy that ends-
up with the maximum of hosts compromised even under the
best opponent strategy (strict dominance) or at least against
the maximum number of opponent strategies (weak domi-
nance).

7.1 Single Site Defense

When the honey-net is not present the only type of attack
that can defeated is the public exploit attack by patching
the vulnerable service as soon as the patch is available:

Ts Pl Ac Rule Ta S Pa C
0 I sel 0day avail 2 ⊥ - -

48 I exec 0day avail 2 ⊥ 0 0
48 I sel Custom avail 2 ⊥ - -
336 I exec Custom avail 2 ⊥ 0 0
337 I sel Public avail 2 ⊥ - -
337 A sel Patch avail 2 ⊥ - -
385 I exec Public avail 2 ⊥ 0 0
385 I sel Compr public 7 2 - -
385 A exec Patch avail 2 ⊥ 0 2700
385 A sel Patch 7 2 - -
391 A exec Patch 7 2 1 3500
392 I fail Compr public 7 2 0 200

Rule names have been abbreviated. Column abbrevia-
tions are Ts for time, Pl for player, Ac action, Ta target ver-
tex, S successor vertex, Pa payoff and C for cost.

This weakly dominant strategy dominates only public
exploit attack. Custom exploit and zero day attack are un-
stoppable. The situation can be improved by adding the
following rule:

Γ3:1 : Pre ♦�CustomAvail ∧ V uln ∧ Public
−→ 0, A, Firewall, 100
Effect Public

This rule models that the administrator can decide to
take preventive actions and firewall vulnerable services
as soon as a vulnerability is disclosed. With this rule the
administrator weakly dominant strategy improves as it now
successfully defeats custom exploit:

Ts Pl Ac Rule Ta S Pa C
0 I sel 0day avail 2 ⊥ - -

48 I exec 0day avail 2 ⊥ 0 0
48 I sel Custom avail 2 ⊥ - -
336 I exec Custom avail 2 ⊥ 0 0
337 I sel Public avail 2 ⊥ - -
337 A sel Patch avail 2 ⊥ - -
385 I exec Public avail 2 ⊥ 0 0
385 I sel Compr custom 7 2 - -

e 385 A exec Patch avail 2 ⊥ 0 3600
385 A sel Firewall 7 2 - -
388 A exec Firewall 7 2 0 5600
388 A sel Patch 7 2 - -
389 I fail Compr custom 7 2 0 2000
394 A exec Patch 7 2 1 6100
394 A sel UnFirewall 7 ⊥ - -
395 A exec UnFirewall 7 ⊥ 1 6403

The intruder still has a dominant strategy that involves
using 0day exploit. Additionally firewalling service as soon
as a vulnerability is disclosed is in most cases not a suitable
policy.

10

7.2 Multiple-sites Defense

When the honey-net is used the administrator defense
strategy can defeat zero day attacks as long as the honey-
net is targeted first:

Ts Pl Ac Rule Ta S Pa C
0 I sel 0day avail 2 ⊥ - -

48 I exec 0day avail 2 ⊥ 0 0
48 I sel Compr 0 day 4 2 - -
51 I exec Compr 0 day 4 2 1 20000
52 I sel Compr 0 day 7 2 - -
52 A sel Attack catched 4 ⊥ - -
52 A exec Attack catched 4 ⊥ 0 2000
52 A sel Firewall 7 4 - -
52 A exec Firewall 7 4 0 4800
54 I fail Compr 0 day 7 2 1 40000
54 I sel Custom avail 2 ⊥ - -
342 I exec Custom avail 2 ⊥ 1 40000
343 I sel Public avail 2 ⊥ - -
343 A sel Patch avail 2 ⊥ - -
390 I exec Public avail 2 ⊥ 1 40000
391 A exec Patch avail 2 ⊥ 0 4000
391 A sel Patch 7 2 - -
397 A exec Patch 7 2 1 4500
397 A sel UnFirewall 7 ⊥ - -
398 A exec UnFirewall 7 ⊥ 1 4803

But the intruder has still a strictly dominant strategy that
involves to attack company’s network first:

Ts Pl Ac Rule Ta S Pa C
0 I sel 0day avail 2 ⊥ - -

48 I exec 0day avail 2 ⊥ 0 0
48 I sel Custom avail 2 ⊥ - -
336 I exec Custom avail 2 ⊥ 0 0
337 I sel Public avail 2 ⊥ - -
337 A sel Patch avail 2 ⊥ - -
385 I exec Public avail 2 ⊥ 0 0
385 I sel Compr 0 day 4 2 - -
385 A exec Patch avail 2 ⊥ 0 5700
385 I sel Compr custom 7 2 - -
385 A sel Patch 7 2 - -
389 I exec Compr custom 7 2 1 2000
389 I sel Trust abuse 8 7 - -
391 I exec Trust abuse 8 7 2 2200
391 I sel Trust abuse 6 7 - -
391 A exec Patch 7 2 1 10400
393 I exec Trust abuse 6 7 3 2400
393 I sel Compr public 4 2 - -
400 I exec Compr public 4 2 4 2600
401 A sel Attack catched 4 ⊥ - -
401 A exec Attack catched 4 ⊥ 1 14200

This result is consistent with real world honey-net pur-
pose that aims at reducing the threat by catching unknown
threats without being able to catch them all. Note that the
intruder strategy uses a custom exploit and not the zero day

exploit because it is sufficient to compromise the network if
the intruder targets first the company’s network.

7.3 Further zero day threat mitigation discussion

Using a honey-net allows to defeat partially zero day
attacks. It is possible to extend this model to n sites to
mitigate even more zero day threats. In order to compute
the risk associated to an zero day attack, it is assumed
that zero day attacks are only used against very specific
sites, and that the attacker cannot make a distinction
between the real and the honey-net service. Under these
hypothesis, with one honey service and one real service,
the probability that the attacker targets first the honey
service is 1

2 . Therefore adding a honey service allows
to mitigate the zero day threat by 50%. Adding an extra
honey-net service will reduce the zero day threat by 66%
and so on. We call this absolute threat reduction. Another
possibility is to use multiple-sites cooperation to achieve
relative threat reduction. Relative threat reduction does
not focus on reducing the threat that all services experience
but the threat that each service experiments. If we add to
the example an other site which has the same real service
and the same honey-net service then the absolute threat
remains the same because the probability that the attacker
targets first the honey-net is still 50% (2 of 4). However
if we add an interaction between sites that allows to alert
other sites when a real service is compromised then the
relative threat that each service experience is reduced to
25%. Relative threat reduction is used to improve network
resilience to attack. This directly applies to sites that use
multiples mirrors. It can also apply to P2P networks where
one node can alert others to mitigate the attack propagation.

8 Evaluation

To evaluate the effectiveness of anticipation games to
analyze complex multiple-sites scenarios, we have imple-
mented the full framework with locations and penalties
in a tool called NetQi [6]. The game engine is written in
C for performance reasons. Evaluations were conducted
on a regular Linux core 2 desktop using the standard time
command and the game engine built-in stats output to know
how many plays and states have been considered.

In order to measure the scalability of the approach, we
have taken the example presented in the paper as a basis and
extended it by adding more sites. The evaluation scenario
considered is when these sites rely on a single honey-net to
mitigate zero day threat. This type of scenario occurs for
instance when multiples companies outsource their network
security to the same company. This scenario analysis is

11

possible because the set of rules allows a simultaneous
use of the firewall rule. The example extension was done
by increasing the number of services by site to 10, and
duplicating the company site until the number of sites
considered is sufficient. When a site is added, we also
add its corresponding set of dependencies to the virtual
vertex and the honey-net to the model. For instance a 3
sites analysis involves a honey-net and two company’s
networks (30 services). We have also evaluated the impact
of increasing the number of vulnerability by site. Finally
we have studied the impact of rule interleaving by running
the analysis with one attack rule (0 day) then two rules
(zero day and custom), and finally with the three rules of
the example. We do not detail the impact of incrementing
the number services by site here because it have a lesser
impact on performance than the others criterion. The
analyzer was asked to find the defense strategy.

Sites Rules T ime
2 1 0.03
3 1 0.08
4 1 8.24
5 1 16517
2 2 0.03
3 2 0.08
4 2 12.23
5 2 23970
2 3 0.03
3 3 0.1
4 3 1020

Figure 7. Site and rules number impact on
performance

Even if the logic is EXPTIME-hard it is possible to per-
form an analysis on five sites (50 services) for one vulnera-
bility in a reasonable amount time as presented in figure 7.
The time needed to performs the analysis explode when 6
sites are considered. We were able to contains time blow un-
til 5 sites because NetQi take advantage of strategy informa-
tion to perform early cuts. The idea behind early cuts is to
stop considering a play as soon as the strategy constraint is
violated. This optimization only applies when the strategy
has a path constraint (�). In our defense strategy it works
because as soon as a service that does not belong to the
honey-net is compromised, the execution is cut. This opti-
mization is very effective because it scales with the number
of sites. The impact of the optimization is visible in figure
8 that presents analysis performance results for 3 sites, 1

vulnerability, and 1 attack rules. The number of states and
plays considered greatly decreases.

Early cut plays states time (s)
No 6 113 459 18 444 859 515
Yes 124 047 366 829 9

Figure 8. Early cut impact evaluation

The impact of increasing the number of vulnerabilities
with two sites (paper exact setup) is depicted in figure 9. As
soon as the number of vulnerabilities grow the time com-
plexity begin to blow.

Nb of vuln time (s)
1 0.03
2 2
3 3316
4 >week

Figure 9. Vulnerability number impact on per-
formance

9 Conclusion

We have introduced an extension for anticipation games
that adds locations and penalties. This extension can be
used to model multiple-sites defense scenario. We also
have proved that this extension does not change anticipation
games complexity. The performance evaluation of anticipa-
tion games with this extension done with our tool NetQI
shown that even if anticipation games are EXPTIME-
complete they can still be used in practice to model com-
plex scenario. As a future direction of work, we will try
to find a suitable service collapsing abstraction, to contain
even more time explosion.

12

References

[1] B. Adler, L. de Alfaro, and M. Faella. Average reward
timed games. In FORMATS 05, volume 3829, pages
65–80. Springer-Verlag, 2005.

[2] R. Alur, T. A. Henzinger, and O. Kupferman.
Alternating-time temporal logic. J. ACM, 49(5):672–
713, 2002.

[3] M. Artz. NetSPA : a Network Security Planning Archi-
tecture. PhD thesis, Massachusetts Institute of Tech-
nology. Dept. of Electrical Engineering and Computer
Science., 2002.

[4] M. R. B. Game Theory: Analysis of Conflict. Harvard
University Press, 1997.

[5] J. Balthrop, S. Forrest, M. E. J. Newman, and M. M.
Williamson. Technological networks and the spread of
computer viruses. Science, 304:527–529, Apr 2004.

[6] E. Bursztein. Netqi http://www.netqi.org.

[7] E. Bursztein and J. Goubault-Larrecq. A logical
framework for evaluating network resilience against
faults and attacks. In 12th annual Asian Com-
puting Science Conference (ASIAN), pages 212–227.
Springer-Verlag, Dec. 2007.

[8] E. Bursztein and J. C. Mitchell. Using strategy ob-
jectives for network security analysis. In 5th Interna-
tional Conferences on Information Security and Cryp-
tology INSCRYPT. Springer-Verlag, 2009.

[9] A. Church. Logic, arithmetics and automata. In
Congress of Mathematician, pages 23–35. Institut
Mittag-Leffler, 1962.

[10] V. Colizza, A.Barrat, M. Barthelemy, and A. Vespig-
nani. The modeling of global epidemics: stochastic
dynamics and predictability. Bulletin of Mathematical
Biology, 68:1893–1921, 2006.

[11] F. Cuppens and A. Miège. Alert correlation in a coop-
erative intrusion detection framework. In Symposium
on Research in Security and Privacy, pages 202–216.
IEEE Computer Society, 2002.

[12] F. Cuppens and R. Ortalo. Lambda: A language to
model a database for detection of attacks. In RAID
’00: Proceedings of the Third International Workshop
on Recent Advances in Intrusion Detection, pages
197–216, London, UK, 2000. Springer-Verlag.

[13] M. Dacier, Y. Deswarte, and M. Kaaniche. Models and
tools for quantitative assessment of operational secu-
rity. In 12th International Information Security Con-
ference, pages 177–186, May 1996.

[14] L. de Alfaro, M. Faella, T. Henzinger, R. Majumdar,
and M. Stoelinga. The element of surprise in timed
games. In 14th International Conference on Concur-
rency Theory, volume 2761 of LNCS, pages 144–158.
Springer-Verlag, 2003.

[15] T. Henzinger and V. Prabhu. Timed alternating-time
temporal logic. In Formats 06, volume 4202, pages
1–18. Springer-Verlag, 2006.

[16] K. Ingols, R. Lippmann, and K. Piwowarski. Practical
attack graph generation for network defense. In AC-
SAC ’06: Proceedings of the 22nd Annual Computer
Security Applications Conference on Annual Com-
puter Security Applications Conference, pages 121–
130, Washington, DC, USA, 2006. IEEE Computer
Society.

[17] S. Jha, O. Sheyner, and J. Wing. Two formal analysis
of attack graphs. In CSFW ’02: Proceedings of the
15th IEEE Computer Security Foundations Workshop
(CSFW’02), pages 49–63, Washington, DC, USA,
2002. IEEE Computer Society.

[18] F. Laroussinie, N. Markey, and G. Oreiby. Model-
checking timed atl for durationnal concurrent game
structures. In FORMATS 06, volume 4202 of LNCS,
pages 245–259. Springer-Verlag, 2006.

[19] R. Lippmann, S. Webster, and D. Stetson. The effect
of identifying vulnerabilities and patching software on
the utility of network intrusion detection. In RAID ’02:
Proceedings of the 5th International Workshop on Re-
cent Advances in Intrusion Detection, pages 307–326.
Springer-Verlag, Oct 2002.

[20] K.-w. Lye and J. M. Wing. Game strategies in network
security. Int. J. Inf. Sec., 4(1-2):71–86, 2005.

[21] A. Mahimkar and V. Shmatikov. Game-based anal-
ysis of denial-of-service prevention protocols. In
18th IEEE Computer Security Foundations Workshop
(CSFW), Aix-en-Provence, France, June 2005, pp.
287-301. IEEE Computer Society, 2005., pages 287–
301. IEEE Computer Society, Jun 2005.

[22] O. Maler, A. Pnueli, and J. Sifakis. On the synthe-
sis of discrete controllers for timed systems (extended
abstract). In STACS 95, pages 229–242, 1995.

[23] B. Morin, L. Mé, H. Debar, and M. Ducassé. M2d2 :
a formal data model for ids alert correlation“. In RAID
Recent Advances in Intrusion Detection, LNCS, pages
115–127. Springer-Verlag, 2002.

[24] S. Noel and S. Jajodia. Managing attack graph com-
plexity through visual hierarchical aggregation. In

13

VizSEC/DMSEC ’04: Proceedings of the 2004 ACM
workshop on Visualization and data mining for com-
puter security, pages 109–118, New York, NY, USA,
2004. ACM Press.

[25] S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs. Effi-
cient minimum-cost network hardening via exploit de-
pendency graphs. In 19th Annual Computer Security
Applications Conference, pages 86–95, Dec. 2003.

[26] J. Pamula, S. Jajodia, P. Ammann, and V. Swarup. A
weakest-adversary security metric for network config-
uration security analysis. In QoP ’06: Proceedings
of the 2nd ACM workshop on Quality of protection,
pages 31–38, New York, NY, USA, 2006. ACM Press.

[27] A. Pnueli and R. Rosner. On the synthesis of a reac-
tive module. In POPL ’89: Proceedings of the 16th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 179–190, New York,
NY, USA, 1989. ACM Press.

[28] C. Ramakrishan and R. Sekar. Model-based analysis
of configuration vulnerabilities. In Journal of Com-
puter Security, volume 1, pages 198–209, 2002.

[29] E. Rasmusen. Games and Information. Blackwell
publishing, 2007.

[30] R. W. Ritchey and P. Ammann. Using model check-
ing to analyze network vulnerabilities. In SP ’00:
Proceedings of the 2000 IEEE Symposium on Security
and Privacy, pages 156–165, Washington, DC, USA,
2000. IEEE Computer Society.

[31] F. Saffre, J. Halloy, and J. L. Deneubourg. The ecol-
ogy of the grid. In ICAC ’05: Proceedings of the
Second International Conference on Automatic Com-
puting, pages 378–379, Washington, DC, USA, 2005.
IEEE Computer Society.

[32] B. Schneier. Attack trees: Modeling security threats.
Dr. Dobb’s journal, Dec. 1999.

[33] B. Schneier. Secrets & Lies: Digital Security in a Net-
worked World. Wiley, 2000.

[34] R. Segala, R. Gawlick, J. F. Sogaard-Andersen, and
N. A. Lynch. Liveness in timed and untimed systems.
Inf. Comput., 141(2):119–171, 1998.

[35] H. R. Shahriari and R. Jalili. Modeling and analyzing
network vulnerabilities via a logic-based approach.

[36] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M.
Wing. Automated generation and analysis of attack
graphs. In SP ’02: Proceedings of the 2002 IEEE

Symposium on Security and Privacy, pages 273 – 284,
Washington, DC, USA, 2002. IEEE Computer Soci-
ety.

[37] L. P. Swiler. A graph-based network-vulnerability
analysis system. In New Security Paradigms Work-
shop, pages 71 – 79. ACM Press, 1998.

[38] S. J. Templeton and K. Levitt. A requires/provides
model for computer attacks. In NSPW ’00: Proceed-
ings of the 2000 workshop on New security paradigms,
pages 31–38, New York, NY, USA, 2000. ACM Press.

[39] V.Gorodetski and I.Kotenko. Attacks against com-
puter network: Formal grammar-based framework and
simulation tool. In 5th International Conference “Re-
cent Advances in Intrusion Detection”, pages 219–
238. Springer-Verlag, 2002.

[40] M. M. Williamson. Throttling viruses: Restricting
propagation to defeat malicious mobile code. In 18th
Annual Computer Security Applications Conference,
pages 61–68, Los Alamitos, CA, USA, 2002. IEEE
Computer Society.

[41] D. Zerkle and K. Levitt. Netkuang: a multi-host con-
figuration vulnerability checker. In SSYM’96: Pro-
ceedings of the 6th conference on USENIX Security
Symposium, Focusing on Applications of Cryptogra-
phy, pages 195–201. Usenix, 1996.

14

