
Framing Attacks on Smart Phones and Dumb Routers:
Tap-jacking and Geo-localization Attacks

Gustav Rydstedt Baptiste Gourdin Elie Bursztein Dan Boneh∗

Stanford University
{rydstedt,bgourdin,elie,dabo}@cs.stanford.edu

Abstract
While many popular web sites on the Internet use frame
busting to defend against clickjacking, very few mobile
sites use frame busting. Similarly, few embedded web
sites such as those used on home routers use frame bust-
ing. In this paper we show that framing attacks on mobile
sites and home routers can have devastating effects. We
develop a new attack called tap-jacking that uses features
of mobile browsers to implement a strong clickjacking at-
tack on phones. Tap-jacking on a phone is more powerful
than traditional clickjacking attacks on desktop browsers.
For home routers we show that framing attacks can result
in theft of the wifi WPA secret key and a precise geo-
localization of the wifi network. Finally, we show that
overlay-based frame busting, such as used by Facebook,
can leak private user information.

1 Introduction
Web framing attacks take place in the browser and begin
with a malicious page loading a victim page as an iframe.
Once the victim page is iframed the framing page can
mount a variety of attacks. The most common example
is clickjacking [5] where the victim page is loaded as a
transparent frame over an innocuous page that tempts the
user to click on buttons or links. When the user clicks, the
click event is sent to the transparent victim frame causing
some unintended action to take place on behalf of the user
(e.g. sending a tweet or purchasing an item). Other fram-
ing attacks include UI redressing [4] (where the framing

∗Supported by NSF.

page places frames on top of the victim page), drag-and-
drop attacks [13], and scrolling attacks [13]. We discuss
these attacks in more detail later on in the paper.

The standard defense against framing attacks, called
frame busting, refers to code or annotation in a web page
intended to prevent the web page from being loaded in a
sub-frame [11]. The following simple frame busting code
is a commonly used:

if (top.location != location)
top.location = self.location;

A recent survey of clickjacking defenses on popular
sites [11] shows that only 14% of Alexa Top-500 im-
plement some variant of frame busting. The survey also
shows that current methods can be easily circumvented
and proposes better frame busting methods.

In this paper we study framing attacks on mobile sites
and framing attacks on sites embedded in consumer elec-
tronics, specifically routers. We develop attacks show-
ing that smartphones and routers are highly vulnerable
to framing attacks, much more so than regular browsers
and public web sites. Despite these significant vulnera-
bilities very few mobile and embedded sites defend them-
selves against framing. We also show that some framing
defenses, such as those employed by Facebook, prevent
standard clickjacking but can leak private user informa-
tion.

Framing attacks on mobile web sites. We found that
53% of Alexa-Top 500 sites have mobile alternatives to
their primary site designed to render better on a phone.
These are most often served in the .mobi domain, or
in m.*, mobile.*, wap.* subdomains. A majority

1

deliver a significant subset of their functionality to their
mobile sites.

While 14% of the top 500 sites do some form of frame
busting on their main site, virtually none use frame bust-
ing on their mobile sites (we only found two sites that
frame bust both their main and mobile site). As a result
almost all mobile sites are vulnerable to framing attacks
on the phone. In Section 2 we introduce tap-jacking, a
framing attack on mobile web sites that is far more effec-
tive than its clickjacking cousin on desktops. These at-
tacks show that unless frame busting is used mobile sites
can be easily compromised.

At a minimum, tap-jacking requires a mobile browser
with support for javascript and frames. We use extra fea-
tures of mobile browsers to make the attack more effec-
tive. Both the iPhone and Android browser have all the
features needed for tap-jacking. Surprisingly, the Opera
mini browser seems to be immune to tap-jacking, despite
its full support for Javascript and frames. We discuss this
in more detail in Section 2.2.

Lessons. It is not clear why sites that frame bust on their
main site fail to do so on their mobile equivalent. When
discussing this issue with developers we predominately
hear two arguments:

1. Older mobile browsers do not support the JavaScript
needed for frame busting. The concern is that frame
busting code will cause the mobile site to render in-
correctly on older phones. However this concern is
easily addressed by selectively rendering based on
user-agent. That is, inject frame busting code when
the user agent is an iPhone or Android and do not
inject it if the browser is an older phone.

2. Clickjacking is not an issue on cell phones. We hope
this paper demonstrates that this assumption is sim-
ply not true. In fact, we show that quite the opposite
holds: framing attacks are more effective on smart
phones than on desktops.

As an aside we note that most mobile sites do not check
that the user agent is a mobile phone and happily render
in a desktop browser. Moreover, most sites do not dif-
ferentiate sessions between the main site and the mobile
site (i.e. a user logged in at the main site is also logged
in at the mobile site and vice versa). As a result, if a site

frame busts on the main site but not on the mobile site,
an attacker can frame the mobile site on a desktop client
and mount a framing attack of its choice on the site. For
example, if a user is logged into a web mail site on the
desktop, an attacker on the desktop browser can frame the
mobile version of the web mail site and use the user’s cre-
dential from the main site to send mail on behalf of the
user.

Clearly mobile sites should frame bust if the user agent
indicates a phone that supports frame busting. If this is
not possible for some reason then at the very least sites
should not share sessions between the main site and the
mobile site.

Framing Facebook. Facebook deploys an interesting
frame busting defense — when framed the site places a
dark transparent div over the page (see Figure 3). This
div lets the user see the page contents, but any click on
the div causes the top window to navigate to Facebook’s
main site. We show in Section 3 that although this frame
busting defense may protect against traditional clickjack-
ing attacks, an attacker can still learn private information
about the user’s Facebook profile. Our approach makes
use of Stone’s scrolling technique [13]. We use specific
hashtags on the framed page to expose private informa-
tion on the page (despite the same origin policy). We give
the details in Section 3.

Framing attacks on routers. We show that many popu-
lar wifi routers are vulnerable to framing and XSS attacks
that can be used to steal the router’s WPA secret key and
to accurately locate the router on a map. Our attacks make
use of new same origin bugs in current versions of Fire-
fox and Chrome. We were able to carry this out as an
automated attack on eight different brands of routers us-
ing a default password: Belkin, Netgear, D-link, Linksys,
Buffalo Zyxtel, SMC, TrendNet. The end result is that an
attacker can create an accurate world map of WPA keys
needed to access private wifi networks where wifi is avail-
able.

2 Phone TapJacking
In this section we introduce TapJacking — a clickjack-
ing attack that leverages the accessibility features imple-
mented in mobile browsers. TapJacking illustrates the im-

2

portance of frame busting on mobile sites. We hope this
section will convince more sites to do so.

2.1 TapJacking Safari on the iPhone
The iPhone Safari browser supports all the basic function-
ality to pull off a classic clickjacking attack: transparency
and IFRAMEs. Transparency is supported through the
CSS opacity attribute in Safari Mobile. However, extra
features of the iPhone make the attack far more danger-
ous.

Zooming. On desktop browsers an attacker can en-
sure that the user clicks at the right place in the vic-
tim IFRAME. One approach is to consistently move the
IFRAME into place after a MouseMove event is detected
so that the mouse always points to the button that the
attacker wants clicked. Since this method is more diffi-
cult to pull off on the iPhone we instead use the iPhone’s
zooming functionality.

Recall that scaling on smart-phones is often done via
the viewport meta tag:

<meta name = "viewport"
content = "width = 320,

initial-scale = 10,
user-scalable = no">

In this example the initial scaling of the entire viewport
is set to 10 (maximum). At this level of zoom, any reg-
ular button will cover the entire width of the screen. By
putting this enlarged button in an IFRAME, the clickjack-
ing attack becomes much more efficient (considering the
“tappable” area is very large). Interestingly, scaling prop-
erties of the the top frame takes precedence over those of
framed sites. Many popular sites, such as Facebook and
Twitter, have a very constrained user interface for scaling,
but this can be mitigated by framing them and scaling the
top frame.

Figure 1 shows an example where the Twitter publish-
ing button has been enlarged in a transparent IFRAME.
To further ensure the user is constrained to click the tar-
geted area, we can disable any further scaling by setting
the user-scalable attribute to 0.

Hiding or faking the URL Bar. An important difficulty
with clickjacking on the desktop is making the browser’s

Figure 1: Tapjacking Twitter with a zoomed button

address bar point to a legitimate-looking URL. This prob-
lem is not an issue with TapJacking since on the phone an
attacker can cause the address bar to disappear. The fol-
lowing code hides the URL bar out of sight as soon as the
site is loaded by scrolling the URL navigation bar out of
the visible window:

<body onload="setTimeout(function()
{ window.scrollTo(0, 1) }, 100);">

</body>

An attacker can embed a picture of a fake URL address
bar in the framing page thereby making the page appear
to come from a legitimate site. Figure 2 gives an example.

Abusing the shared screen real-estate. The tight
integration and sharing of screen real-estate between
the browser and iPhone UI supports another way to
strengthen tapjacking. The idea is to create a page that
masquerades as a well known phone behavior, unrelated
to the web. For example, Figure 1 shows what appears to
be an incoming SMS text message notification. Under the
hood it is not the SMS application but a webpage rendered
to look like a native app. Because users know they need to

3

The left figure shows the fake address bar under the real one. The middle figure
shows the fake URL replacing the real one. The right figure shows no URL bar.

Figure 2: Faking the URL bar

click either “Close” or “Reply” upon receiving a text mes-
sage notification, they click without a second thought. In
Figure 1 clicking will not acknowledge the text message
but instead publish a tweet.

Strengthening Tapjacking by turning off navigation
and using dynamic scrolling. It is possible to prevent
any touch gesture on a tapjacking page using the touch-
Move event to disable the default behavior. This is done
by calling the function preventDefault as shown in the
code below:

function touchMove(event) {
event.preventDefault();

}

Furthermore it is possible to dynamically position
the viewport by using the standard JavaScript function
window.scrollTo(x,y). This helps the attacker dy-
namically position the viewport window just above the
targeted button.

Session handling. Without a session to hijack click-
jacking attacks are not very interesting. Sessions iden-
tifiers are often stored in “session cookies.” On desk-
top browsers, these session cookies expire when the user
closes the browser. This is not true on the iPhone as the
session persists when Safari Mobile is closed. This helps

the attacker since sessions lay dormant for possible click-
jacking attacks. A malicious link can be sent to the user
in an e-mail causing the browser to load a live session.

While analyzing the Alexa Top 100 top sites, we noted
that some “mobile cookies” expire further in the future
than their desktop counterparts. Presumably this is de-
signed to minimize the number of times that the user
needs to login on a cell phone. Again, these longer lived
sessions help the attacker.

Defenses: the X-Frame-Options HTTP header. This
header instructs the latest version of all main browsers
(other than Firefox) not to render the page in a sub-frame.
Both the iPhone 3.0’s Safari Mobile and the Android 2.1
browser support this header. The header should be added
whenever the user agent is one of these browsers. When
used, this header provides adequate protection from fram-
ing attacks.

2.2 Other mobile browsers

The Android Browser. We also tested the Android
browser on a Motorola Droid. All the tapjacking tech-
niques we outlined for the iPhone are applicable to
the Android browser. Support for IFRAMEs, opacity
changes, scaling, viewport meta tags, makes the Android
browser a prime target for tapjacking.

4

Opera Mini. Opera Mini uses a proxy-rendering sys-
tem to display webpages faster. Although Opera Mini has
growing JavaScript and CSS support we conclude that a
traditional clickjacking attack is not possible on the Opera
Mini (we tested on version 5.0.5 on the iPhone). Although
IFRAMEs are supported, changing their opacity and size
reliably is not. This makes the classic approach to click-
jacking difficult since we cannot effectively redress click-
able UI of the target page.

3 Framing Facebook
Figure 3 shows Facebook’s clever clickjacking defense
which places a semi-transparent DIV overlay on top of the
page. Users can see their session content but not interact
with it. When the DIV is clicked, Facebook attempts to
frame bust using standard techniques. While this defense
works reasonably well against standard click-jacking at-
tacks, we show that it leaks private user information. We
use a scrolling attack due to Paul Stone.

Stone [13] presented a technique for bypassing the
same origin policy on pages that do not frame bust.
Roughly speaking, the idea is that the attacking page
loads the victim page victim.com in a small iframe.
The attacking page then navigates the victim frame to
victim.com#test. If the hashtag ‘test’ exists on
victim.com then the browser will scroll the victim
frame to the position of that hashtag. If the hashtag does
not exist the victim frame is unchanged. By reading the
scroll position, the attacking page can learn if ‘test’ ex-
ists on the victim page (in violation of the DOM same
origin policy).

In this section we show that Stone’s Frame Leak Attack
(FLA) has broad applicability to defeating overlay-based
frame busting, as in Figure 3. We use Facebook as an
example.

The attack works as follow: When the user visits
the attacker’s page, an invisible double iframe with a
very small width and height is displayed. The inner
iframe is redirected to Facebook with a specified hash-
tag: #pagelet_intentional_stream. If the user
is logged-in the scrollbar will move. This movement can
be dynamically read and reveals the user’s login status
to the attacker. Similarly, the attacker can test if the
victim is a specific Facebook user by navigating the in-

visible iframe to a vanity-name url and note if hashtag
#box_app_2305272732 is present. The attacker can
test if a specific user is a friend of the victim by navigating
the sub-frame to an appropriate hashtag. Many features
of the user’s profile can be extracted this way. The attack
was fixed by Facebook at the end of July, just before our
presentation at the Black Hat.

Figure 3: Facebook Black div defense

4 Router attacks
Many routers provide a web interface for configuration
and monitoring. In this section we show that a multi-
stage attack, including framing or XSS injection, enables
an attacker to steal a router’s WPA key and determine its
physical location. The attack involves seven steps out-
lined in Figure 4. Since the specifics are highly depen-
dent on browser behavior, the first step fingerprints the
browser. The second step scans the local network to find
the router. The third step fingerprints the router to deter-
mine what type of authentication the router is using and
what default password to try. Fingerprinting the router
also lets us choose an XSS payload to inject or a page
to frame. The fourth step logs into the router. This is
the most challenging step for both forms of authentica-
tion (HTTP authentication and web-form authentication):
with HTTP authentication the browser pops up a dialog.
With web authentication it is difficult to test if authentica-
tion succeeded. In the fifth step we inject the XSS payload
or frame the victim router page. In the sixth step the at-
tacker extracts the WPA key and the wifi mac address and

5

sends both to the attacker. Finally, in the last step, the
attacker uses Mozilla’s “Location-Aware Browsing” pro-
tocol [8] to geo-localize the router.

A video of our attack that implements all the steps
above in an automated fashion is available at http:
//ly.tl/bh1. We tested feasibility of these attacks
on routers from Belkin, Netgear, D-link, Linksys, Buffalo
Zyxtel, SMC, TrendNet. All are vulnerable to drag and
drop framing attacks and at least 4 can be exploited di-
rectly by XSS.

1 Fetch the malicious page

3 Find the router

2 Fingerprint the browser

4 Fingerprint the router

5 Inject the payload

6 Extract the data

7 Geolocalize the network using the
"location aware browsing" protocol

Attacker

Google

Victim

Router

Figure 4: Router secret stealing attack flow

Attacking routers in an automated fashion can be dif-
ficult due to strictly enforced same origin policies and
router filtering rules. We tried numerous approaches and
attacks for each of the seven steps we outlined in Fig-
ure 4; often with little success. Security patches and fixes
in modern browsers and Flash forced us to be more cre-
ative. For instance, the current version of Flash (10.1)
makes it difficult to probe and attack a local network due
to a security conscious socket and web service API. Sim-
ilarly, we tested the idea of using the UPNP protocol to
extract or change router passwords; it turns out that in ev-
ery router we tested the UPNP component was disabled
by default.

4.1 Dealing with Browser Behavior
Knowing the specific victim browser is crucial for this at-
tack.

Firefox. (FF) is currently the best browser for attacking
LAN routers (from the attacker’s point of view). First, it
allows for XHR requests to arbitrary domains. This lets
us implement an efficient port scanner without using the
classic onError image approach (e.g. as in [2]). Second,
we exploit two bugs we found1 which make steps 2, 3, and
4 much easier. The first bug lets us detect if the router is
using HTTP authentication or a web form authentication.
The second bug lets us brute force HTTP authentication
and run an image-based fingerprint on the router without
triggering an HTTP authentication popup.

Internet Explorer 8. IE is the hardest browser to exploit
since it strictly disallows cross-domain XHR unless the
script is from the file:// origin. This forces us to imple-
ment port scanning using the onError event on image tags,
which is slow. The bigger problem with IE is with routers
that use HTTP basic authentication. All versions of IE
since November 2007 reject URLs containing a username
and password [7]. As a result there is no way to exploit IE
to automatically log in to a router using HTTP authenti-
cation. We are only able to use IE for an automated attack
only if the router uses web authentication.

Chrome. The Firefox bug that let us fingerprint a
router using images without triggering a popup works on
Chrome too. Generally speaking most methods we used
on Firefox also work on Chrome.

4.2 Finding the router
To locate a router, our port scanner looks for all the prob-
able IP addresses in the 192.168.* range. More precisely
our proof of concept scans the addresses in 192.168.*.1
and 192.168.*.254. We can easily extend this to all the
other private IP address ranges defined in RFC 1918, but
routers use a limited set of default IP addresses. When
XHRs (XMLHTTPRequests) are used to scan the network
we take advantage of their asynchronous nature to span
the 512 requests at once.

On IE, the port scanning is performed by spanning 512
invisible images and timing how long it takes before each
image event handler onerror is triggered. Every router
tested takes less than 3 seconds to answer whereas the

1Since these bugs are still under review by Mozilla, we do not include
all the details here.

6

http://ly.tl/bh1
http://ly.tl/bh1

image timeout is 12 seconds which makes this technique
possible. This is a rudimentary and slow, but works in
practice.

4.3 Fingerprinting the router
When an IP is found, we perform a series of tests to iden-
tify the type of router. This tells us what default pass-
words to try. We start first by scanning the router to see
if ports other than the web interface(80) are open. Due
to the Firefox bug mentioned earlier we have the ability
to conveniently tell if a router is using HTTP Basic au-
thentication and if a candidate password succeeded. In
Chrome we take the conservative approach of brute forc-
ing the HTTP authentication with all known default pass-
words before testing to see if it succeeded. We can do so
by sending authentication requests which will not notify
the user of a failed attempt by exploiting a bug in Chrome.

4.4 Login to the router
We deal with HTTP authentication by either trying all the
probable passwords (Chrome) or exploiting a bug (Fire-
fox). For routers that do authentication using a web form,
we found that it is possible to authenticate to all of them
because they are susceptible to cross site request forgery
(CSRF) attacks. However the real difficulty of dealing
with web based authentication is not in sending the re-
quest but rather in detecting whether or not we are suc-
cessfully authenticated because of the same origin policy.

Until now the standard approach to detect if a login
was successful was based on timing attacks [2]. There
are other ways to do this more reliably. The first one,
Cross site Url Hijacking (XSUH) [3], leverages the fact
that Firefox error catching discloses the URL responsible
for the error. One SMC router we tested performs a redi-
rection when the user is successfully logged in. Therefore,
by triggering a fetching error and subsequently looking at
the returned URL we can tell if we were able successfully
log in.

However, the most reliable technique to detect if the
user is successfully logged in is a technique called “fram-
ing leak attack” (FLA) discussed in the previous section.
This technique leverages Stone’s [13] observation that one
can combine double framing and a hash-tag to detect if a
page contain a specific element or not. To test if the user

is logged in or not, we navigate the inner iframe to a page
and hashtag only available while logged in. If the scroll-
bar is present the user is logged in, otherwise not. Note
that this attack works on every router since none of them
deploy frame busting defenses.

4.5 Stealing WiFi information
Once we are logged into the router, there are two options
of acquiring needed WIFI keys: a drag-and-drop framing
attack or an XSS injection attack.

XSS injection. If the router is vulnerable to XSS attacks,
the most straightforward way to steal the Wifi keys is to
inject code via a CSRF and capture information. The XSS
payload will do the following: First, open an iframe to
a page containing WPA key or MAC address (or other
useful information). Since the payload operates in the
same origin as the framed page it can freely read script
and DOM data from it. This data is then sent back to the
attacker using a cross-domain form request.

Framing attack. When it is not possible to inject an XSS
payload, we extract needed information using Stone’s
drag and drop attack [13]. The attack lets an attacker ex-
tract data from a framed page by abusing the HTML 5
drag-and-drop capabilities2. This works on all routers and
all browsers we tested due to the complete lack of fram-
ing defenses. The downside is that it requires some social
engineering to get the user activate the drag.

4.6 Geolocalization
Once the attacker has the MAC address, geolocalization
can be done using Mozilla’s “Location-Aware Browsing”
protocol [8]. The ability to locate a network from its MAC
address is an important advance in offensive tools since it
allows the attacker to know the exact location of the vic-
tim. Geo-localizing a router using XSS was first demon-
strated by Samy [6].

5 Related Work
Niu et al. [9] previously used the iPhone’s browser
scrolling mechanism to design a phishing attack where

2A demo of the drag and drop attack is available at: http://ly.tl/rt1

7

the address bar scrolls off the screen and a fake address
bar is presented. Here we use a similar mechanism as one
step in framing attacks.

Clickjacking attacks on the iPhone were mentioned
in [10]. These attacks used a specific bug in the iPhone
browser that was fixed long ago (iPhone OS 2.2) and is no
longer an issue. Our tap-jacking attack uses main stream
features of the browser that are unlikely to be changed.

In 2006 Stamm et al. [12] showed that routers are vul-
nerable to cross site request forgeries that can result in a
take-over of a home or corporate network. These attacks
are quite difficult to mount on modern routers. We had to
resort to the long sequence of steps in Figure 4.

Bojinov et al. [1] show that many web sites embed-
ded in consumer electronics are vulnerable to web at-
tacks. They focus mostly on specific application logic
errors where as we focus on generic framing attacks that
work against a large set of routers.

6 Summary and recommendations
This paper discusses a significant vulnerability in mo-
bile web sites that is easily corrected by including frame
busting in these sites. Mobile web sites that do not use
frame busting are vulnerable to tap-jacking and expose
their users to unnecessary risk. We hope that our discus-
sion of tap-jacking will encourage more sites to embed
frame busting in their web pages.

Beyond mobile sites, we studied the effectiveness of
overlay-based frame busting as used by Facebook. We
showed that while this defense may prevent traditional
click-jacking, it can result in exposure of private user in-
formation. When possible it is much safer to use tradi-
tional frame busting [11] that prevents user content from
rendering in a sub-frame of an unknown domain.

We also showed that web vulnerabilities, including
framing and XSS, can result in theft of a wifi’s WPA key
in routers that use a default password. As an added twist
we noted that Mozilla’s location-aware browsing protocol
can help the attacker determine the exact location of the
victim’s wifi network. While conceptually simple, getting
these attacks to work in practice took considerable effort.
The complexity of the attack may suggest that browsers
are getting better at protecting users from basic web ex-
ploits, however several holes such as drag-and-drop at-

tacks still remain.

References
[1] H. Bojinov, E. Bursztein, and D. Boneh. XCS: cross chan-

nel scripting and its impact on web applications. In CCS
’09: Proceedings of the 16th ACM conference on Com-
puter and communications security, pages 420–431. ACM,
2009.

[2] A. Bortz, D. Boneh, and P. Nandy. Exposing private infor-
mation by timing web applications. In Proc. of WWW’07,
pages 621–628, 2007.

[3] S. Dalili. ross site url hijacking by using error object in
mozilla firefox. http://packetstormsecurity.
org/papers/general/xsuh-firefox.pdf,
May 2010.

[4] Gnucitzien. More advanced clickjacking – ui re-
dress attacks. www.gnucitizen.org/blog/
more-advanced-clickjacking-ui-redress-attacks/,
2008.

[5] R. Hansen. Clickjacking. ha.ckers.org/blog/
20080915/clickjacking.

[6] S. Kamkar. mapxss: Accurate geolocation via router
exploitation. http://samy.pl/mapxss/, January
2010.

[7] Microsoft. Internet explorer does not support user names
and passwords in web site addresses (http or https urls).
support.microsoft.com/kb/834489, Nov 2007.

[8] Mozilla. Location-aware browsing. www.mozilla.
com/en-US/firefox/geolocation.

[9] Y. Niu, F. Hsu, and H. Chen. iphish: Phishing vulnerabili-
ties on consumer electronics. In Proc. of UPSEC, 2008.

[10] J. Resig. Clickjacking iphone attack, 2008. ejohn.org/
blog/clickjacking-iphone-attack.

[11] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson.
Busting frame busting: a study of clickjacking vulnerabili-
ties at popular sites. In IEEE Oakland Web 2.0 Security
and Privacy (W2SP’10), 2010. seclab.stanford.
edu/websec/framebusting.

[12] S. Stamm, Z. Ramzan, and M. Jakobsson. Drive-by pharm-
ing. In Proc. of ICICS, pages 495–506, 2007.

[13] P. Stone. Next generation clickjacking. media.
blackhat.com/bh-eu-10/presentations/
Stone/BlackHat-EU-2010-Stone-Next-\
Generation-Clickjacking-slides.pdf, 2010.

8

http://packetstormsecurity.org/papers/general/xsuh-firefox.pdf
http://packetstormsecurity.org/papers/general/xsuh-firefox.pdf
www.gnucitizen.org/blog/more-advanced-clickjacking-ui-redress-attacks/
www.gnucitizen.org/blog/more-advanced-clickjacking-ui-redress-attacks/
ha.ckers.org/blog/20080915/clickjacking
ha.ckers.org/blog/20080915/clickjacking
http://samy.pl/mapxss/
support.microsoft.com/kb/834489
www.mozilla.com/en-US/firefox/geolocation
www.mozilla.com/en-US/firefox/geolocation
ejohn.org/blog/clickjacking-iphone-attack
ejohn.org/blog/clickjacking-iphone-attack
seclab.stanford.edu/websec/framebusting
seclab.stanford.edu/websec/framebusting
media.blackhat.com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-Next- \ Generation-Clickjacking-slides.pdf
media.blackhat.com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-Next- \ Generation-Clickjacking-slides.pdf
media.blackhat.com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-Next- \ Generation-Clickjacking-slides.pdf
media.blackhat.com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-Next- \ Generation-Clickjacking-slides.pdf

	1 Introduction
	2 Phone TapJacking
	2.1 TapJacking Safari on the iPhone
	2.2 Other mobile browsers

	3 Framing Facebook
	4 Router attacks
	4.1 Dealing with Browser Behavior
	4.2 Finding the router
	4.3 Fingerprinting the router
	4.4 Login to the router
	4.5 Stealing WiFi information
	4.6 Geolocalization

	5 Related Work
	6 Summary and recommendations

