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Abstract—In this paper, we demonstrate the feasibility of a
competitive player using statistical learning methods to gain
an edge while playing a collectible card game (CCG) online.
We showcase how our attacks work in practice against the
most popular online CCG, Hearthstone: Heroes of World
of Warcraft, which had over 50 million players as of April
2016. Like online poker, the large and regular cash prizes of
Hearthstone’s online tournaments make it a prime target for
cheaters in search of a quick score. As of 2016, over $3,000,000
in prize money has been distributed in tournaments, and
the best players earned over $10,000 from purely online
tournaments.

In this paper, we present the first algorithm that is able
to learn and exploit the structure of card decks to predict
with very high accuracy which cards an opponent will play in
future turns. We evaluate it on real Hearthstone games and
show that at its peak, between turns three and five of a game,
this algorithm is able to predict the most probable future card
with an accuracy above 95%. This attack was called “game
breaking” by Blizzard, the creator of Hearthstone.

1. Introduction

Over the last 20 years, since the inception of Magic
the Gathering [34], collectible card games (CCGs) have
emerged as one of the most pervasive forms of contemporary
game play. In North America alone, sales were estimated
to be above $800 million in 2008 [9]. Given the popularity
of CCGs, it is not surprising that in the last few years,
with the rise of mobile devices and tablets, computer-based
CCGs have emerged as one of the largest parts of the
e-sport scene. In particular, the most popular online CCG,
Hearthstone: Heroes of World of Warcraft [11], which had
over 50 million players as of April 2016 [26], is one of
the most profitable games for e-sport players. As of 2016,
over $3,000,000 in prize money has been distributed in
Hearthstone tournaments since its creation in 2014 [12].
The ranking shows that the best players earned over $10,000
from purely online tournaments and over $200,000 in
total [12]. Given Hearthstone’s popularity, the amount of
money at stake in an online tournament and that most
offline tournaments with prizes have an online qualification
phase, it is important to understand how players can attack
Hearthstone to gain an unfair edge.

Contribution. To address this need, this paper, to the best
of our knowledge, describes the first security analysis of an
online CCG and it is the first to develop statistical learning
attacks [17] against CCG games. This paper presents
the first algorithm that is able to learn and exploit the
structure of card decks to predict with very high accuracy
which cards an opponent will play in future turns. Using
a dataset of 50,000 game replays collected in May 2014,
we demonstrate that our statistical learning attack works
in practice by successfully using it against Hearthstone.
At its peak, between turns three and five of a game, our
algorithm is able to predict the most probable future card
with an accuracy above 95%. As recounted in the ethics
section later in the introduction, the effectiveness of this
attack was validated by the creator of Hearthstone, Blizzard
Entertainment, which deemed it “game breaking.”

Ethics. We reached out to Blizzard Entertainment to disclose
our findings prior to publication but we did not get any
response. However, after we presented some of the findings
reported in this paper at a famous hacking conference,
Blizzard reached out to us. During the conversation, one
of the main game designers acknowledged that the deck
prediction attack demonstrated was indeed game breaking
and asked us to not publish our prediction tool or dataset.
Following Blizzard’s request, we agreed not to release the
code for our prediction tool or the full dataset.

Outline. The remainder of the paper is organized as follows.
In Section 2, we provide the background needed to under-
stand the state of game security research, what a CCG is
and how a Hearthstone game is played out in particular. In
this section, we also discuss our threat model and how our
dataset was created. In Section 3, we focus on predicting
which cards the opposing player will play in future turns.
We describe how our prediction attack works and report the
results of our evaluation against our dataset. In Section 4, we
briefly evaluate the game’s most predictive metrics using a
decision tree to shed light on the most important factors that
players need to consider while playing Hearthstone. Finally,
we conclude in Section 5.



2. Background

In this section, we provide the necessary background.
We start by discussing the state of game security research.
Then we briefly explain what collectible card games (CCGs)
are. Next, we describe how a Hearthstone game is played,
its win conditions and where the game complexity stems
from. Next, we discuss the threat model and attack types
considered in this paper. Finally, we explain how the dataset
used in this paper was collected.

Security research, machine learning and games. Research-
ing how to exploit games and detecting cheaters using
machine learning has the long-standing tradition of being a
very prolific security research topic. Detecting MMORPG
bots, including World of Warcraft ones, was studied in [16],
[22]. A technique to build a map hack and defend against
them was presented in [5]. Using machine learning to detect
aim bots for Unreal 3 was presented in [15]. The research
presented in [35], [1] extended the use of machine learning
for aim-bot detection to other FPSs (First Person Shooters).
Applying fuzzing to attack online games and in particular
League of Legends was presented in [6].

Collectible Cards Games. Also known as trading card
games (TCGs),1 CCGs are broadly defined as turn-based
strategy games that use a pool of cards (usually hundreds)
that are collected by players. These games rose in popularity
in 1993 with the release of Magic The Gathering [34]
even though the origin of the genre can be traced back to
a baseball card game published in 1904 [9]. What makes
CCG different from traditional card games is that players
cannot buy all the cards at once; they need to collect
them by buying boosters to expand their collection. Cards
have different rarity and a booster randomly includes a
few common cards (the less rare ones) and at least one
card that is rare or “better”. Hearthstone has five levels
of rarity: sets cards (which are given for free to players),
common cards, rare cards, epic cards and legendary cards.
Each Hearthstone booster comprises five cards selected
at random with at least one card that is rare or better.
Hearthstone is considered a “live” CCG, which means
that its creator, Blizzard, keeps adding new cards to it in
expansion sets, which are released regularly. During a game,
players play with decks that they constructed from their
personal collection of cards. The construction of a deck
is strictly regulated. The number of cards a deck contains
is usually restricted (30 exactly for Hearthstone) as is the
number of copies of a given card that can be played (two of
the same kind for Hearthstone, except for legendary cards,
which are restricted to a single copy).

Beyond their recreational and competitive purposes,
CCGs are also used for education, including teaching kids
about diseases [28] or professionals about computer secu-
rity [10].

1. The acronyms CCG and TCG are used interchangeably and they co-
exist due to licensing issues. In this paper, we will exclusively use the CCG
acronym as Hearthstone is marketed as an online CCG by Blizzard.

From a theoretical standpoint, CCG games are viewed
as imperfect information games with randomness. Previous
research on CCGs focused on either optimizing how
to collect cards [3] or taking a theoretical approach to
determining the best way to play the game [8].

To the best of our knowledge, no prior work exists on
predicting what cards the opposing player will play in future
turns, on finding over-powered cards or on using machine
learning to predict a game’s outcome. However while there
is no formal research on it, we note the existence of bots [2]
that are designed to play the game instead of humans for
leveling purposes. Those bots work by analyzing the current
board state and attempting to make the best play possible.
The only documented attempt to exploit a game design flaw
using statistical learning to gain a competitive edge was the
use of a genetic algorithm to find an optimal build order in
Starcraft 2. This led to the discovery of a very efficient and
yet counterintuitive build order called the “7 roach timing-
attack” [4].

Hearthstone. Hearthstone: Heroes of Warcraft is a free-
to-play digital CCG that was initially released in early
2014 by Blizzard entertainment [11]. As of May 2016,
Hearthstone has more than 50 million player accounts
registered worldwide [26], making it the most popular
online CCG. As of 2016, over $3,000,000 in prize money
has been distributed in Hearthstone tournaments since its
creation [12]. The ranking shows that the best player earned
over $10,000 from purely online tournaments and over
$200,000 in total [12]. This makes Hearthstone one of the
top ten most profitable games for pro-players and a target
of choice for cheaters, given the large online cash prizes
and that most offline tournaments will financially reward
each player who qualifies to the offline phase through the
online qualification phase.

Figure 1. Screenshot of the Hearthstone game board with the most important
features illustrated

A Hearthstone game, as other CCGs, is a turn-based
match between two opponents represented by their chosen
“hero,” an important character from Warcraft lore that has
30 health points, as depicted in Figure 1.



At the start of the game, each player draws three cards
from their deck, which comprises 30 cards selected by the
player from their card collection before the game started.At
the start of their turn, the player draws a new card from their
deck. While most cards are available to heroes of any class,
a substantial portion is limited to a specific class, giving each
hero its own strengths and unique possibilities. Each card or
hero power requires the player to spend a specific amount
of mana to play it, strategically limiting the player’s options.

At the beginning of turns one through to ten, the player’s
mana pool is replenished and increased by one, allowing
them to play more powerful cards as turns pass. After turn
ten, the player’s mana pool is replenished and capped to
ten mana points. We note that for game balancing reasons,
the player who starts second gets an extra card from their
deck to equalize the draw count and a “bonus” card, called
the coin, which gives them a free mana point when played.
A Hearthstone match ends when one or both players have
reached zero health, or choose to concede.

Building the best deck possible is an essential skill
and many archetypes of decks exists. Deck archetypes are
characterized by the distribution of the mana cost of the
cards they contain, which is referred to as the mana curve.
A low mana curve (having many cheap cards) is called an
aggro deck and is usually very good early in a game. A
balanced curve is referred to as a mid-range deck and a
deck that contains mostly powerful cards with high mana
cost is known as a control deck. Last but not least, the
combo deck refers to a deck that leverages very powerful
synergy between specific cards to kill the opposing player,
usually in a single turn. Blizzard aggressively balances the
game by nerfing decks (which means making them less
efficient) that exhibit a too high win rate or “make the game
not fun,” which usually means combo decks that can kill
an opponent in a single turn [31].

Hearthstone offers four types of card: minions, which are
creatures that exist on the board as visible in Figure 1. A
minion has a set of attack and health points and sometimes
special abilities, which are described in the text of the card. A
minion’s current attack points are displayed in a yellow circle
located on the bottom left of the card, whereas a minion’s
current health is represented as a red drop located on the
bottom right of the card. The second type of card comprises
spells, which are abilities directly played from the player’s
hand. The third type of card comprises weapons, which can
be equipped one at a time by the player’s hero to give it the
ability to attack for a defined amount of attack points and
time. Finally, secrets are cards that are played on the board
but are hidden behind a question mark. They are triggered by
specific conditions including if the opponent plays a minion
or an opponent’s creature tries to attack the player’s hero.

Threat model. The threat model considered in this paper is
the passive attacker model, which assumes that the attacker
has access to the state of the game and the ability to observe

all its network traffic. We also assume that the attacker
has access to a vast set of previous game replays, which
can be used to apply various statistical learning methods.
This attacker model was chosen over the active attacker
model because it matches what a cheater can realistically
do during competitive Hearthstone games that are observed
by referees, casters and a crowd that will immediately spot
any kind of active tampering. In an online tournament, the
referees see only the game screen via the in-game interface
and the players’ faces through their webcam, which leaves
players full latitude to run the tools of their choice before
and during games. Such passive attacks are far from being
theoretic: for example, some players, due to screen reflections
on the webcam feed, have been caught watching a casting
video stream during a tournament to know their opponent
hands [24].

Attack types. In this paper, we focus on how an attacker
can use a machine-learning algorithm during the game to
predict the most likely cards that the opponent will play
in future turns. As in any strategy game, anticipating the
other player’s moves is essential for winning, as it informs
the player’s decision-making process. For example, a player
routinely has to decide between playing an extra creature
to further a tempo advantage or given the likelihood that
the opponent will play a board-clear, to hold off to reduce
the value that the opponent will gain from their board-clear.
Such decisions made under time (a turn is 75 seconds) and
tournament pressure are very difficult. This is even more
true when the opponent plays secrets, which are cards that
are in play but not revealed, as the type of secret played
and its trigger condition need to be evaluated carefully. As
recounted in the introduction, the effectiveness of our attacks
was validated by Hearthstone game designers themselves
to the point where they called the predicting attack “game
breaking” and asked us to not publish our prediction tool.

Attack generality. In this paper, we analyze Hearthstone
as it was in April and May 2014. Since then, many cards
have been added and some cards have been changed (nerfed).
While those changes affect the ranking of the most powerful
cards currently available and the most popular decklists, our
attacks and methods remain equally applicable, as they target
the core mechanics of the game not specific cards or bugs.
For the same reasons, our attacks work against any CCG.

Dataset. For the paper, we use a dataset of 50,000 anony-
mous replays that came from hundreds of players who used
a game-recording tool. Players use this tool to keep track of
and analyze their performance. As Blizzard does not provide
a replay features, game replays were recorded from the game
logs. As a result, our replays contain only partial information
regarding the opposing player’s deck: we only get a log when
a card is drawn, played, activated or killed. If a card is drawn
but never played, we know only that the opponent had an
unknown card in their hand. However, this is not an issue
because we are interested only in predicting the opponent’s
next move based on what the player knows. Replays were
collected between April and May 2014.



3. Predicting an opponent’s future plays

Figure 2. Our prediction tool in action. Predicted cards are displayed on
the bottom left.

In this section, we demonstrate how we built a tool, as
illustrated in Figure 2, that can predict what the opposing
player will play in future turns based on the previous cards
they played. These predictions give the player an edge
because anticipating the other player’s moves is essential
for winning in Hearthstone, since this guesswork informs
the player’s decision-making process. For example, players
routinely wonder if they should play an extra creature to
further a tempo advantage or given the likelihood that the
opponent will play a board-clear, whether they should hold
off to reduce the value that the opponent will gain from
their board-clear. Being able to figure out under time (a
turn is 75 seconds) and tournament pressure the optimal
play in these complex situations is what separates the best
players from the rest.

The average win rate on the online ladder for the best
decks for good players is around 53% while pro-players
commonly reach 70% with the same decks [20]. One may
think that a drawback of this attack is that it requires
observing quite a few played cards before making good
predictions. However, our evaluation shows that that is not
the case: by turn two, our algorithm already makes accurate
predictions and is able, for instance, to predict two cards
that the opponent will play in the future with a success rate
over 50%: 66.3% for the best prediction and 44.1% for the
seond best prediction.

This section is structured as follows: first we discuss
the underlying reasons that make Hearthstone predictable,
then we explain how we are able to read game events
programmatically. Next, we present our machine-learned
ranking algorithm. Finally, we evaluate our tool on a dataset
of 50,000 replays and show that it has up to a 96.2% success
rate at predicting a card that will be played by the opponent
in the future when its accuracy peaks between turns three
and five.

3.1. Why is Hearthstone predictable?

Hearthstone in its original release, the one considered
in this paper, had 465 cards that players could choose from
to build their deck of 30 cards. It has a limit of two copies
of a given card (see Section 2 for more background). This
hypergeometric distribution [33] of choosing 30 cards out of
930 leads theoretically to a space of potential decks that is
extremely large: roughly 4.72358 possible decks. However,
in practice the decks played have a lot of predictable
structure due to the following reasons: First, some cards are
restricted to a specific hero class. Second, by design many
cards are meant to work best when played with other very
specific cards. Third, a significant number of cards are just
bad or under-powered, which means that they are almost
never played in competitive games. Last but not least, a
huge fraction of players rely on netdecking [25], which is
the act of using a deck made by someone else (usually a
pro-player) and found online.

As of 2015, the netdecking phenomenon has become
so mainstream that weekly blog posts provide and rank the
top decks currently played [30]. As a result, the distribution
of cards that are used by players is heavily skewed. For
example, the site HearthPwn, which has a very large set of
decklists supplied by players, reports that the card Keeper of
the Groove is used in 76.89% of druid decks [18]. Similarly,
the Northshire Cleric is used in 84.16% of priest decks [19].
While self-reported decks may not accurately reflect the real
distribution of what cards are played, the aforementioned
statistics still convey that there is broad agreement among
players on what are the must played cards. Our tool exploits
this underlying structure by learning from game replays
which cards are played significantly more often than others
and which cards are often played together.

3.2. How to read the game state

Before delving into how our prediction algorithm works,
it is worth explaining how our tool gets access to a player’s
actions, including which cards were played and how many
cards were drawn. As Blizzard does not provide an API
for this, over time, four main ways have been devised by
the Hearthstone community. The first relies on DLL injec-
tion [13] and hooks the main functions of the game. This
approach allows one not only to get a player’s actions but
also generates them (e.g., play a card). This makes it the
method of choice for Hearthstone bots [2] that automate
game playing for leveling purposes. Unsurprisingly, this
method is also the one that Blizzard actively looks for and
bans using its Warden [32], as it is used for these forbidden
automation and map hacks [5]. Two alternative approaches
were developed in the early days of Hearthstone to track
games: the first relies on network traffic sniffing to capture
players’ actions at the network level. The second one uses
image recognition techniques and continuually takes game
screenshots.



Both approaches were deprecated in May 2014 when
reverse engineering of the game client revealed it was
possible to turn on debug logs that would provide enough
information to track game actions [14]. Since then, every
game tracker, including our prediction tool, moved to this
method as it does not violate Blizzard’s terms of service, like
network sniffing, and is more reliable than image recognition.
After setting Hearthstone in debug mode, our tool continually
reads the logs and parses the entries to recreate an internal
representation of the game state.

3.3. Machine-learned ranking algorithm

As outlined earlier, the goal of our tool is to provide a
ranked list of cards that are in the opponent’s deck and are yet
to be played, based on cards previously played. To achieve
this goal, we built a machine-learned ranking system [7] that
given a set of previous cards returns a ranked list of cards
by their likelihood of being played. An example of our tool
output is visible on the bottom left of Figure 2.

Figure 3. Hearthstone card sequence as a bag of bigrams

Our machine-learned ranking system uses a modified
version of Markov chains [23], where card co-occurrences
are modeled as a bag of bigrams [27]. As illustrated
in Figure 3, extracting a bag of bigrams from a card
sequence involves extracting all possible combinations of
card pairs regardless of the order they were played. While
experimenting with various data models, we found that using
a model requiring more memory (e.g., trigrams, 4-grams,
. . . ) or even adding more structure to the model (e.g., using
regular bigrams to learn the exact card sequence) yielded
worse results. We provide an analysis of the reasons behind
this counterintuitive result and a comparison between the
performance of bigrams and trigrams in the evaluation
part of this section. Until then, we focus on describing the
approach that performs the best: modeling card sequences
as a bag of bigrams.

Learning phase. To learn its model, our tool extracts for
each game replay the sequence of cards played by the
opponent and constructs a bag of bigrams. Those bags of
bigrams are then used to construct the occurrence table,
which for a given card returns the list of co-occurred cards

with the number of times this co-occurrence happened. At
prediction time, this allows it to find the popular pair/combos
efficiently, as they are the ones that have the largest number
of co-occurrences.

Figure 4. Prediction phase example

Prediction phase. During a game, as depicted in Figure 2,
each time the opponent plays a card, the algorithm outputs
a list of potential next cards ordered by their probability of
being played. Under the hood, as exemplified in Figure 4,
the tool leverages the occurrence table constructed in the
learning phase to construct a ranked list of cards as follows:
First, the algorithm uses the occurrence table to retrieve
all cards that were co-played with the cards already played
and the frequency of those co-occurrences. In our example,
depicted in Figure 4, the algorithm looks up the cards that
were co-played with Deadly Poison and Shiv. These lookups
led it to retrieve the Blade Flurry card, which was co-played
350 times with Deadly Poison and 400 times with Shiv. It
also retrieves the Fan of Knives card, which was co-played
500 times with Deadly Poison, and Amani Berserker, which
was played 400 times with Shiv. Next, the algorithm sums up
card appearances, removes cards already played and reverse
sorts the remaining potential cards based on the frequency
of their co-occurrences. In our example, Blade Flurry ends
up being the most seen/probable card with a count of 750,
Fan of Knives is second with a count of 500, and Amani
Berserker is last with a count of 400. Cards with a frequency
below a certain threshold, Amani Berserker in our example,
are cut off to remove improbable or noisy cards. While not
depicted in the example for clarity, before returning the list,
the algorithm normalizes the card count by the total count,
such that the returned list has a percentage associated with
each card and not the raw count.

3.4. Evaluation

For the evaluation, we used 45,000 games from our
dataset for training and 5000 games for testing. See Section 2
for the dataset collection methodology. For each test game,
the algorithm was asked at the end of each turn to predict
what would be the top ten cards that would be played in
future turns.
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Figure 5. Success rate for top ten prediction bucketed by turn

We then compared each prediction with the cards that
were effectively played in the upcoming turns and marked
a prediction as correct if the card was effectively played.
The result of our evaluation is summarized in Figure 5. To
evaluate if our ranking algorithm is successful at ranking
the cards with the highest chance of being played higher,
we evaluated the success rate of each rank independently.
Additionally, in our evaluation, to account for the fact that
as turns pass, the amount of information (number of cards
played) available to the algorithm increases and that the
number of cards yet to be played decreases, we bucketed
the result by turn. This allows us to understand how the
tradeoff between more information and having a smaller set
to predict from plays out.

The first observation we can make is that the ranking
function performs as intended. In every case, the highest
ranked prediction is the one with the highest success rate,
as visible in Figure 5. Similarly, the prediction ranked
number two always has a better success rate than the one
ranked below it and so forth. The only misranking happens
for the lowest prediction (rank tenth) at turn 2, where the
prediction ranked tenth has a higher success rate than the
one ranked ninth. This is likely due to the fact that the
algorithm has seen very few cards at that stage (likely one)
and, therefore, cannot separate the predictions.

Secondly, we observe that the algorithm is very
successful at predicting what the opponent will play, with
the best prediction having a 96.2% success rate for turns
three and five. Throughout the first ten turns of the game,
the best prediction has a success rate above 56.9%, which
shows that the algorithm successfully learned the hidden
correlations between cards and is able to use it to make
accurate to very accurate predictions reliably throughout
the game.

Thirdly, we see that indeed the tradeoff between having
more information and a smaller set of cards yet to play to
predict from does affect the algorithm’s performance. In the
first seven turns, the average prediction success rate steadily
climbs from 23.5% to 63.2%.

Then as the game progresses and the number of turns
left and, therefore, the number of cards the opponent will
play are both getting smaller and smaller, the accuracy drops
back and reaches 47.5% by turn ten. This shows that past a
certain point, more information cannot counterbalance the
fact that the pool of cards yet to be played is getting too
small.

Finally, we note that the delta between the best prediction
success rate and the worst one decreases steadily as the turns
pass. This is again expected because the amount of mana the
player has has increased, which leads to a greater number
of valid plays as turns pass.
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Trigram best prediction
Bigram average prediction
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Figure 6. Bigram versus trigram success rate

During our experimentation, we attempted to use a
model requiring more memory by using longer n-grams.
However, none of these alternative models yielded better
results than bigrams. Similarly, every attempt to use a more
constrained model, such as strict bigrams, in the hope of
exploiting further the relations between cards, yielded worse
results than our bag of bigrams. This negative result is best
illustrated by comparing the success rate of the algorithm
when using bigrams and trigrams. As visible in Figure 6,
the best trigram-based prediction is significantly worse for
turns one to five and marginally better for turns six to
ten. However, the average prediction success rate is worse
for every turn and by quite a huge margin for the early turns.

This is a counterintuitive result because in other cases,
including predicting words typed, spell-checking and pre-
dicting almost any type of sequence [21], using a model
requiring more memory leads to increased accuracy. This
result is partially explained because players draw cards at
random, which adds baseline noise to each game. Also the
order in which a player plays cards during a given turn
may not influence the outcome, which makes all sequence
permutations likely to see some play. Another potential
reason that favors having a “laxer” model is that players
run decks with slight variations, such as including one or
two copies of a given card. That being said, it may be
possible that a model requiring even more memory, such as
LSTM/RNN [29], and using significantly more data, could
outperform the current approach.



Given that our tool is already good enough at helping an
attacker figure what their opponent will play in future turns,
this investigation is left as an open question.

4. Predictive Features

In this section, we briefly explore the use of machine
learning to predict the outcome of a Hearthstone game.
Understanding the most predictive metrics sheds light on
what are the optimal strategies for playing Hearthstone and
can help players to make better decisions. Over the years, the
Hearthstone community has come up with a few metrics that
are routinely used to predict who will win a game. However,
until this work, there was no formal analysis of how good
those metrics are at predicting game outcomes. Drawing on
our experience, forum discussions and game analysis by pro-
players, we compiled and a formalized the following list of
metrics:
• Mana efficiency: The mana efficiency metric is the dif-

ference between how much mana the player spent versus
how much their opponent spent. So, if the player has spent
4 mana and their opponent has spent 2, then the mana
efficiency will be 4− 2 = 2. Conversely, if the opponent
spent 6 mana and the player spent only 2 mana, the mana
advantage is 2 − 6 = −4. Given that according to our
card model (Section 3), the power of a card is (almost)
perfectly reflected by its mana price, we were expecting
that this metric would be the most predictive. As reported
earlier, this is the case, which supports even further the
validity of our model and its assumptions.

• Board mana advantage: The board mana advantage is
computed as the difference between the sum of the mana
for the cards that the player has on the board versus the
sum of the mana for the cards the opponent has on the
board. According to our model, this metric should be a
better predictor than the sheer number of creatures on the
board, as our model implies that a 3-mana creature is more
powerful than two creatures that cost 1 mana.

• Board advantage: The board advantage measures the
difference between how many minions the player has
versus how many minions the opponent has in play.

• Draw advantage: The draw advantage measures who
drew the most cards by calculating the difference between
how many cards the player has drawn so far and how many
cards their opponent has drawn. For instance, if the player
has drawn four cards and their opponent has drawn two,
then the draw advantage is 4− 2 = 2. Our model predicts
that the value of having a card is a fraction of the card’s
mana cost, so this metric should be a weak indicator.

• Hand size advantage: This metric refers to how many
cards the player has in hand versus how many cards the
opponent has. It is a somewhat strange metric, but many
casters and players refers to it, so it was included. If the
player has two cards in their hand and the opponent has
three cards, then the hand size advantage is 2− 3 = −1.

To evaluate which metric has the most predictive
power, we used the standard random forest feature selection
algorithm, as it outputs a ranked list of features with their
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Figure 7. Various algorithms accuracy at predicting the winner

predictive power. To do this, we modeled games as a binary
classification problem and used our metrics as features. The
feature vectors are constructed by outputting the value of
each metric at the end of each turn for the first 14 turns,
the cumulative value of the features at the end of each
turn for the first 14 turns of the game, and the value and
cumulative value of the metrics at the end of the game. We
then trained a random forest on our dataset using 45,000
games and tested it on 5000 games. To be thorough, on
top of training a random forest algorithm, we also trained
several classifiers, namely a naive Bayes, an extra tree, a
support vector machine (SVM) with a linear kernel, and
a SVM sigmoid kernel grid search. The accuracy of the
various algorithms on our dataset is reported in Figure 7.
All classifiers got better as turns passed, and the accuracy of
each classifier is above the baseline of 50%. The accuracy
of the random forest is very close to the best classifiers,
which are based on SVM. This gave us confidence that
using it to rank features will give meaningful results.

Figure 8. Feature prediction power

The results for the feature selection algorithm are re-
ported in Figure 8. As visible in this chart, the cumulative
metrics that track mana usage (mana advantage and board
mana) are the most predictive. We expected that the mana
advantage metric would be the best, instead of the board
advantage, but with hindsight this makes sense.



A player’s minions that are still in play after a turn gives
them a lasting advantage. While the board size advantage,
draw advantage and hand advantage are significantly less
predictive, the results confirm the community’s intuition that
those metrics are important. We note that the metric selected
by the algorithm as most relevant, was the metric at the end of
the game not the metric at a particular turn, which suggests
that there is no turn that is more important than another,
unlike what some of the Hearthstone community believes,
which is that turns two and three are critical.

5. Conclusion

In this paper, we demonstrated the feasibility for a
competitive player to use statistical learning methods to gain
an edge while playing collectible card games online. We
showcased how our attacks work in practice against the
most popular online CCG Hearthstone: Heroes of World
of Warcraft, which had over 30 million players as of May
2015. We devised a statistical learning algorithm to attack
Hearthstone. It learns and exploits the structure of card decks
to predict with very high accuracy what an opponent will
play in future turns. At its peak, between turns three and
five of the game, this algorithm is able to predict the most
probable next card with an accuracy above 95%.
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