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Abstract. With the growing use of protocols obfuscation techniques, protocol
identification for Q.O.S enforcement, traffic prohibition, and intrusion detection
has became a complex task. This paper address this issue with a probabilistic
identification analysis that combines multiples advanced identification techniques
and returns an ordered list of probable protocols. It combines a payload analysis
with a classifier based on several discriminators, including packet entropy and
size. We show with its implementation, that it overcomes the limitations of tradi-
tional port-based protocol identification when dealing with hard to classify pro-
tocol such as peer to peer protocols. We also details how it deals with tunneled
session and covert channel.
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1 Introduction

The use of protocol identification as a defense against unwanted traffic such as
P2P (peer to peer) and Malware, has received a lot of attention lately. It might
appear that there is a simple identification technique to classify traffic : assuming
that protocols will use well-known ports such as the one assigned by the IANA
[18]. This is, however, not reliable anymore. A recent study [25] reports that in
a large university about 40% of the traffic failed to be classified by this heuristic.
In particular, many P2P (Peer to Peer) protocols use obfuscation techniques to
avoid detection [21]. They do not use static well-known port numbers, but rather
dynamically use available port numbers. They also masquerade themselves by
using ports reserved for other applications and encrypt their packet payloads
[29]. For example, an Edonkey node can use the port 80, typically reserved for
HTTP for its own communication, allowing it to confuse firewalls, packet shaper
and passive network monitors [21]. Moreover prohibited software and botnets
try to deceive network security devices by tunneling their connections into other
protocol such as ICMP or HTTP [7].
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In this paper, we shall show that our advanced protocol analysis allows to
improve protocol identification and detect tunneled and covert session. In par-
ticular, we demonstrate through our passive network monitor prototype NetAn-
alyzer [6] evaluation, that our analysis if effective against two of the most popu-
lars P2P network: Edonkey and BitTorrent while remaining sufficiently efficient
to be used online.

We choose to implement our technique in a passive network monitor be-
cause despite the great benefits provided by an advanced protocol analysis, ev-
ery public passive network monitors we are aware of, including NTop [10] and
Iptraf [19], still solely rely on a port-based heuristic for traffic classification. Ad-
ditionally to traffic classification, our analysis reports valuable information for
network assessment such as software products and protocol versions that can be
used as contextual information for security evaluation.

The main contribution of this paper is a probabilistic identification anal-
ysis that combines a packet payload analysis, a packet classifier and the port
heuristic. The payload analysis is based on signature. The classifier uses mul-
tiple packet discriminators: packet entropy, packet size, and packet intervals.
To our knowledge, this is the first work that combines multiples identification
techniques to return an ordered list of probable protocols for a given session. It
seems to be also the first to add to signature and techniques a confidence value.

The rest of this paper is organized as follows. In Sect. 2, we will survey
related work and in Sect. 3 we will give a straightforward example of how the
analysis works. This example is used as a guideline for the rest of the paper.
Sect. 4 presents our probabilistic identification analysis. Sect. 5 details how tun-
neled session are handheld. Sect. 6 shows how covert channel are detected. Sect.
7 details a specific application of the advanced analysis to passive monitoring:
file masquerading detection. In Sect. 8 we evaluate the accuracy and the speed
of the analysis against P2P traffic. Finally, we will conclude in Sect. 9.

We emphasize that even thought our discussion focus on passive network
monitor, our analysis is not limited to this use. The ability to have a reliable pro-
tocol identification and session contextual information such as software version
are also valuable for Firewall and NIDS (Network intrusion detection system)
and traffic shaper.



2 Related Work

Ranking algorithms are a common for information retrieval [39, 15]. For in-
stance Google use the well known Google Page rank algorithm [30]. Beside
payload and packets discriminators, others techniques exists. They are either
unusable for online analysis [42], or specific to a type of protocol such a P2P
detection [9, 21, 16]. Protocol identification through payload analysis is used
for Q.O.S enforcement in CISCO router [3] and Linux Netfilter [35]. It is also
used in Bro NIDS [11] to instantiate appropriate decoders. The use of automatic
signature generator has received a lot of attention [22, 37, 17, 41] because it re-
moves the burden to create signature by hand. Tools such as Polygraph [28] and
Hamsa [24] are used to create attack signature automatically. Attack against
automatic signature generator have been studied in [8]. Some of NetAnalyzer
signatures are taken from the Nmap [14], and L7 filter [35] databases. This
technique uses packets headers to build a classifier [27] based on discrimina-
tors. Some discriminators work on packet payload for example packet entropy,
[36], and character frequency [41]. Others, such as the packet size or time inter-
val between packets [5] are payload independent and focus on packet headers.
In [23], a combination of six discriminators is used to detect intrusion in HTTP
CGI. Malwares and P2P clients, even Skype [4], use many techniques to avoid
protocol identification. Packet padding [13] is used in Emule [34] to avoid traf-
fic classifier. Popular BitTorrent clients use the ”Message Stream Encryption”
scheme [2] which is specifically designed to defeat protocol identification. Bot-
net use ICMP [7] and DNS [40] covert channel. Tunneling a protocol trough a
proxy [12], is a popular technique to defeat protocol prohibition e.g IRC, Instant
Messaging.

3 Identification Result Example

This example highlights the two most relevant benefits provided by our analysis
namely: the accurate ranked protocol identification, and the session advanced
information reporting.The example is a HTTP session reported by NetAnalyzer
(figure 1). Each session report is composed of four parts: the summary (line 1),
the traffic information (line 2), the advanced information (line 3 to 10) and the
identification details (line 11 and 12);

3.1 Protocol Identification

This first major benefit of our identification analysis, is the ability to identify the
correct protocol regardless of its and to provide the accuracy probability of its
identification.



(1)http (94%): x:1052 -> y.:2080 F:0/2 R::2/0 R:0/2 E:0/0 TCP CLOSED RST
(2)[Traffic] I:1 Kb/s (3pkt) O:37 Kb/s (20pkt) [Distance] C:local S:7
(3)[Protocol]:http (1.1) HyperText Transfer Protocol - RFC 2616
(4)[File] request:www.xxx.org/vip.html Ref:"http://xxx"
(5)[File] content: extension:.html familly:text (X)HTML
(6)[File] request:www.xxx.org/hello.gif Ref:"http://xxx"
(7)[File] content: extension:.jpg familly:image
(8)[Server] Apache httpd 2.0.52
(9)[Client] browser Internet Explorer 6.0 Windows XP
(10)[Client] proxy squid 2.5.STABLE4-20031106
(11)[Guessed protocol] http:94% Port:0% Class:100% Patt:100%
(12)[Guessed protocol] autodesk:9% Port:100% Class:n/a Patt:0%

Fig. 1. NetAnalyzer Session output example

The protocol identified with the highest probability is displayed on the left-
most part of the first line. Here it is the http protocol with a probability of 94%.
It is not 100% because the server port 2080 is not the standard one: 80. Hence
there is a conflict between the port heuristic result and the payload analysis re-
sult. The list of all possible protocols for the session, is presented at the end of
the report (line 11 and 12). Each line gives the protocol name, its probability
and details the result of each technique used. Intuitively the probability of 94%
for the HTTP protocol results of the six signatures positive match along with
the port heuristic’s negative result and the classifier 100% positive result. The
classifier score is 100% positive because every 23 packets of the session match
HTTP protocol profiles. Because each protocol classifier probability result is
independent, the sum of all protocol probabilities might exceed 100% as here.
Autodesk have a probability of 9% because it only has the port heuristic pos-
itive result. Autodesk classifier result report report n/a (not available) because
the analyzer does not have profile for this protocol.

3.2 Advanced Data

Advanced data are displayed from line 3 to 10. These data are gathered when
signatures are successfully matched. The signature language allows to extract
data from the payload such as the filename requested in the HTTP request (line
4 and 6). This is done as in Perl regular expression by adding capture parenthe-
sis to the signature and adding the corresponding capture variable to one of the
signature template. In the case of the HTTP filename, the variable was added to
the filename template.



To provide a set of suitable templates for each type of information gathered
NetAnalyzer uses four types of signatures: protocol, file, software, and user. For
example the software version data is irrelevant when dealing with file analysis.

4 Probabilistic Identification Analysis

As exemplified in the above section, the analysis combines the result of multiple
signatures matches along with identification heuristics. The protocol identifica-
tion is said continuous because for each new packet, the session protocol is re-
evaluated. As demonstrated in [17], protocol identification based on signature
matching is more accurate than the identification based on classifier. Both of
them are of course more reliable than the identification based on port heuristic.
Thus the analysis uses the weighted arithmetic mean to reflect these different
levels of accuracy. Accordingly the probability of a protocol Px is computed as
follows:

Px =
αHx + βCx + γSx

α+ β + γ

where Hx is the protocol probability according to the port heuristic and α is its
confidence coefficient. Hx is either equal to 0 or 100. Cx is the protocol prob-
ability according to the classifier heuristic and β is its confidence coefficient.
Cx range from 0 to 100. Finally S is the protocol probability according to the
payload analysis and σ is its reliability coefficient. In NetAnalyzer, we use the
following values α = 1, β = 5, σ = 10. They are consistent with [17] and work
well in practice. The HTTP protocol probability of the example 1 is therefore:

Phttp =
1× 0 + 5× 100 + 10× 100

16
= 93.75

4.1 Classifier Probability

The classifier probability for a given protocol is computed by comparing each
packet with a set of profiles. In its current implementation, NetAnalyzer only
reports TCP protocol solely identified by profile if and only if there is no pro-
tocol identified by the payload analysis. ICMP and UDP identified protocols
are always reported. The classifier probability is the ratio between successful
matched packets and the total of packets:

C =
success

total
∗ 100

In the above example (Figure 1), the 23 packets were successfully matched
against HTTP profiles.



As in [41], server and client stream profiles are separated to improve classifier
accuracy. This makes sense because often one stream is used to request data that
are sent back by the other e.g the HTTP client request a file that is sent by the
server. The classifier uses four discriminators: the packet size, the time elapsed
since the last packet from the same stream, the time elapsed since the last packet
from the other stream, and finally the entropy of the packet. The entropy use
the Paninsky estimator [31] which is known to be efficient even against a small
amount of data. As noted in [5], the set of profiles matched by a packet is related
to it position in the stream: the stream first packets often contains request and
authentication data. For example a POP3 session starts with a hello exchange
followed by an authentication. That is why we keep a separate set of profiles
for the first 10 packets of each stream and an aggregate one for the remaining
packets. Thus each protocol has 22 profiles sets.

Ping:ICMP:2:2:64:64:995229:1004962:::7.54564:7.65728:

Fig. 2. ICMP ping packet 1 profile

For each discriminator, an upper bound and a lower bound are determined
from the average mean and the standard deviation. If the packet value is between
these bounds then it matches the discriminator. A packet matches a profile if it
matches the four discriminators. We use a set of profiles rather than a single
profile with very large bound to improve detection accuracy. We generate auto-
matically profiles with smaller bound by using the standard k-means clustering
[32] algorithm. We prevent profile over-fitness by limiting the number of pro-
files to 5 by set. During the clustering process, meaningless discriminators are
removed. A discriminator is meaningless, if its standard deviation is too wide
despite the clustering process. For example the entropy discriminator is removed
if it has a standard deviation above 3. Figure 4.1 is an example of profile used
in NetAnalyzer. The first field is the protocol name: Ping. The second field is
the layer 3 protocol: ICMP. The third is the targeted stream: the number 1 is
used for the server stream and 2 for client stream. The fourth field is the stream
packet number. The exemple is a profile for the stream second packet. The rest
of the profile are the four discriminators lower and upper bound: First the packet
size (64 bytes), Secondly the time elapsed since the last packet from the same
stream in microsecond (around 1 second here). Thirdly the time elapsed since
the last packet from the opposite stream. Here it has been removed because it
was meaningless.



Finally the packet entropy, which has to be between 7,54 and 7,65. Profiles
are very efficient for covert channel detection as we will shown in Sect. 5

4.2 Payload Probability

Intuitively the payload analysis can be misled by tunneled session because the
first signature matches belong to the tunnel protocol not the tunneled one. Hence
the first thing to detect tunneled session is to perform continuous identification
to identify the tunneled protocol. This is however not sufficient because the
analyzer has also to figure out which one is the real protocol. This is done by
taking into account the matches time line . Relying on the last match is not
an option because it opens the door to injection attack that add an irrelevant
payload at the end of the session. That is why the payload analysis gives to the
latest matched signature a more significant weight than any previous match. To
do so the technique uses a weighted moving average to compute each protocol
probability:

P =
Dxi × n+Dx−1 × (n− 1) + ...+Dx1 × (1)

n+ (n− 1) + ...+ 1

Where Dxi is the confidence value associated to the signature matched in po-
sition i and n the global number of matches. The confidence value associated
to a signature is by default 100. It can be however tweaked by the signature
language option confidence. This is useful to decrease the confidence of a sig-
nature that is known to produce false positive. NetAnalyzer uses a specialized
signature language to perform the payload analysis that allows to specify the
signature confidence. For instance some of the signatures used to detect edon-
key p2p traffic are known to produce from time to time false positive because
they are quite short. However due to the edonkey protocol format they cant be
improved, hence the only way to mitigate false positive is to reduce their confi-
dence value.

5 Tunneled Session Detection

Tunneling a protocol into an another is a popular technique to bypass firewall
restriction, hence a tunneled session is often a violation of the security policy.
As explained above (Sect. 4.2), the WMA Weighted Moving Average used to
compute the payload analysis probability assigns a heavier weight to the most
recent match. This is consistent with the fact that matches from the tunneled
protocol will be reported after tunnel protocol ones.



(1) CONNECT irc.********.org:6667 HTTP/1.0
(2) HTTP/1.0 200 Connection established
(3) USER 0 0 0 ::
(4) NICK ****
(5) :irc.********.org 001 **** :Welcome to the ** **!0@xxx

Fig. 3. An exemple of a tunneled IRC session in a HTTP one

Figure 3 example is an IRC session tunneled into an HTTP one. The first
two matches will identify the sessions as a HTTP one (line 1 and 2). If the
identification process stops after the first match then the session is incorrectly
identified as HTTP. With the continuous inspection, two matches for the IRC
protocol will be reported (line 3 and 5). Hence the analysis ends up with four
matches: two for HTTP and two for IRC. Because the analysis use a WMA, the
two IRC matches will have an heavier weight, and therefore the session will be
correctly identified as an IRC one. Payload probability scores are:

Shttp =
100 + 200

100 + 200 + 300 + 400
= 30% Sirc =

300 + 400
1000

= 70%

Thereafter identification scores are:

HTTP =
100× 1 + 30× 10

11
= 36, 3% IRC =

0× 1 + 70× 10
11

= 66, 6%

Let’s take a step further and imagine that the session is not a tunneled session
but instead the download of the IRC RFC. In this context, the protocol identifi-
cation has been misled. However, the previous computation does not take into
account the probability given by the classifier. HTTP session and an IRC session
exhibit very different profiles.

The figure 4 presents the packet size evolution for an IRC server stream
whereas the figure 5 shows the packet size evolution for a HTTP server stream.
In the HTTP stream, the packet size is constant after the first packet because
when a file is sent to a client, the standard behavior is to maximize the through-
put by sending the largest packet possible. This behavior is often referred as a
TCP bulk transfers. Conversely because IRC is an interactive protocol the mes-
sage size transmitted by the server to the client greatly fluctuate and never reach
the maximum segment size. Hence every packet will be recognized by the clas-
sifier as HTTP one. Thereafter the complete protocol identification probability
is:

HTTP =
100× 1 + 100× 5 + 30× 10

16
= 56, 25% IRC =

0× 1 + 0× 5 + 70× 10

11
= 43, 75%



Fig. 4. An IRC server stream packet size evolution

Fig. 5. An HTTP server stream packet size evolution



6 Covert Channel Detection

An other important problem is the detection of covert channel. Botnets and mal-
ware use them to hide there presence and bypass firewall restriction. The DDOS
tool Stacheldraht [7] use an ICMP covert channel, and the backdoor Spotcom
[40] use, to some extent a DNS one. ICMP covert channel are hard to detect be-
cause the RFC [33] state that the packet payload can be anything. DNS channel
are also difficult because tunneled traffic hide in TXT record or other arbitrary
length field. That is why covert channel are mainly uncovered by the traffic clas-
sifier. We present here how a ICMP tunnel is detected by the traffic classifier.
For testing purpose, we have used the popular software PTunnel [38] to tunnel
a SSH session into an ICMP covert channel. NetAnalyzer was able to detect it
because the packets generated by the covert channel does not match ICMP ping
profiles. Two discriminators exhibit very different behavior when it is a legiti-
mate ping and when it is a covert channel. The first discriminator is the packet
size: for a legitimate ping, the packet size is constant (diagram 6) whereas it
fluctuates greatly for the covert channel (diagram 7)

Fig. 6. An Icmp echo reply stream packet size evolution



Fig. 7. A Ptunnel server stream packet size evolution

The second discriminator is the interval between packets of the same stream.
Values are very stable (See diagram 8) for a legitimate ping because requests are
send on regular basis, whereas the interval is totally unpredictable for the covert
channel (See diagram 9).

Due to the lack of space, we do not detail how a DNS channel is detected,
but as noted in [20], the entropy discriminator is effective against it. Intuitively
this is because the legitimate data uses a limited character set [26], that induce
a low entropy whereas tunneled session have a high entropy. Traffic classifier
is effective against covert channel, because it is very difficult to impersonate
successfully every aspect of a given protocol. However some obfuscation tech-
niques such as packet padding [13] or a combination of them [2] can be use to
deceive it. In this case the only option is to find an other discriminator that will
be not confused until a new obfuscation method is introduced.

7 File Masquerading Detection

The payload analysis allows NetAnalyzer to use content information to detect
File masquerading. A file masquerading occurs when the extension of file does
not reflect the content of the file e.g an avi file with a .html extension. This
masquerading can mainly occurs for two reasons that deserve attention. The
most common one, is when the masquerading is used to hide litigious or illegal
file.



Fig. 8. An Echo reply stream packet interval evolution

This a common practice used by many pornographic websites to deceive free
hosting policy: they rename their photos or videos with textual extension such as
.txt, to evade server log analysis that only rely on file extension. This technique
is also commonly used by hackers to hide their illegal files on a compromised
server. The second reason that leads to file masquerading is when a legitimate
user makes a mistake. In this case detecting file masquerading is also important
because it can prevents legitimate application to open properly the masqueraded
file. A real world example of such masquerading is visible in figure 1: The first
requested file is a gif masquerades as a jpeg file. This is not a serious issue as
the browser will handle it, but nevertheless gif format is still proprietary.

8 Evaluation

To evaluate the effectiveness of our identification analysis presented in Sect 4,
we run NetAnalyzer against a 8Gb trace of a residential network traffic. The
goal was to evaluate the analysis ability to identify P2P sessions. We run two
analysis : the first with only the port heuristic activated and the second with
advanced analysis.



Fig. 9. A PTunnel server stream interval size evolution

Analysis results are summarized in the following table:

Protocol Port heuristic Advanced inspection Difference
HTTP 8589 9512 10,7%

BitTorrent 0 1504 n/a
Edonkey 1694 11249 564%
Unknown 16604 7564 -54.4 %

Others 3748 806 - 78,5%

When the identification use only the port heuristic, 54% of the traffic is
reported as unknown which is coherent with the study [25]. Only 6% of the
traffic is detected as Edonkey and none as BitTorrent (See figure 10). The traffic
reported as ”Other” include email and instant messaging traffic but also improb-
able protocols. This not surprising that port heuristic performs so poorly against
Edonkey and BitTorrent traffic. Both of them use many obfuscation techniques.
The popular client for the Edonkey network Emule [34] enable by default ob-
fuscation techniques, such as padding, since version 0.47b . Popular BitTorrent
client such Azureus [1] recommends to not use standard port and can use a very
effective obfuscation scheme called ”Message Encryption Stream” [2] based en
public key cryptography and payload randomization. This scheme, also used by
µTorrent, is designed ”to provide a completely random-looking header and (op-
tionally) payload to avoid passive protocol identification and traffic shaping.”
In particular it can use RC4 and DH to encrypt the packet payload.



When the advanced analysis is enabled, the protocol classification accuracy
improves drastically (See figure 11). This time the traffic classification shows
that more than 60% of the traffic is in fact P2P traffic. It also reduce the number
of unknown traffic by 54.4%, and to increase the number of Edonkey session
identified by 564%. The advanced analysis is able to uncover BitTorrent traffic,
something that the heuristic based analysis was unable to achieve. The num-
ber of others protocol also shrinks down by 78,5%: the advanced analysis was
able to reduce the number of sessions incorrectly identified. Even if the protocol
classification is still not perfect, as 25% of the traffic remains unclassified, the
advanced analysis as been proved effective to improve significantly the protocol
classification when hard to classify protocols are used.

Fig. 10. Protocols classification based only on the port heuristic

9 Conclusion

The main contribution of this paper was a probabilistic identification analysis
and its implementation in a passive network monitor called NetAnalyzer. We
have shown that it overcomes the limitations of traditional port-based protocol
identification when dealing with hard to classify protocol. We also have shown
that the analysis is able to deal with tunneled and covert channel. A Future
work is to introduce specific discriminator for P2P to improve further more the



Fig. 11. Protocols classification that uses the advanced analysis

identification. The UDP and TCP connection pairing discriminator proposed in
[21] seems promising.
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