
SessionJuggler: Secure Web Login From an Untrusted
Terminal Using Session Hijacking

Elie Bursztein
Stanford University

elie@cs.stanford.edu

Chinmay Soman
Stanford University

cpsoman@stanford.edu

Dan Boneh
Stanford University

dabo@cs.stanford.edu
John C. Mitchell
Stanford University

jcm@cs.stanford.edu

ABSTRACT
We use modern features of web browsers to develop a secure login
system from an untrusted terminal. The system, called Session
Juggler, requires no server-side changes and no special software
on the terminal beyond a modern web browser. This important
property makes adoption much easier than with previous proposals.
With Session Juggler users never enter their long term credential
on the untrusted terminal. Instead, users log in to a web site using
a smartphone app and then transfer the entire session, including
cookies and all other session state, to the untrusted terminal. We
show that Session Juggler works on all the Alexa top 100 sites except
eight. Of those eight, five failures were due to the site enforcing IP
session binding. We also show that Session Juggler works flawlessly
with Facebook connect. Beyond login, Session Juggler also provides
a secure logout mechanism where the trusted phone is used to kill
the session. To validate the session juggling concept we conducted
a number of web site surveys that are of independent interest. First,
we survey how web sites bind a session token to a specific device and
show that most use fairly basic techniques that are easily defeated.
Second, we survey how web sites handle logout and show that many
popular sites surprisingly do not properly handle logout requests.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection

Keywords
Mobile, session hijacking, secure login, cookies

1. INTRODUCTION
It is well known that password authentication is vulnerable to

malware on the client’s computer and that users logging in from
untrusted machines, such as a friend’s computer, an airport terminal,
or other public access machines, are especially at risk [23]. More-
over, we show that many of the Alexa Top 100 sites do not use
HTTPS on their login pages, further putting users at risk by sending
passwords in the clear. Among the risks encountered by users of an
insecure terminal and WiFi network, password theft has arguably
the greatest consequence on users, since stolen passwords have long
period of validity, are difficult to detect as stolen, and are commonly
applicable across multiple site.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1229-5/12/04.

To address this issue many elegant proposals have tried to im-
prove user authentication by using a smartphone as a security to-
ken [6,7,27,29,30,34]. All these approaches, however, require either
client-side or server-side changes. Prior to our work no solution
provided a universal mechanism that supports secure login to ev-
ery website from any untrusted terminal using an off the shelf phone.

We also mention that Google provides a clever solution where
users, prior to going on a trip, request a number of one-time pass-
words that they then use to login at public terminals. Alternatively,
the Google authenticator application can provide one-time pass-
words on the fly. With this system, a password stolen by malware
is of no use to the attacker. While Google’s solution works well
for Google, it does not help the user login to other sites who do not
implement this system.

In this work, our goal is to improve user authentication for all web
sites and therefore we propose a solution that requires no server-side
changes and uses an unmodified terminal. We only require that
the terminal run a modern web browser with the ability to install a
Javascript bookmarklet.

Our contributions. We demonstrate an architecture called Session
Juggler (http://sessionjuggler.net) that enables users
to login without ever entering their long term credentials on the
terminal. In essence Session Juggler works as follows: the user first
navigates the terminal to the desired web site. The resulting URL
is then transferred to the phone and the user is asked to login to the
site from her phone. Once the login phase is completed the entire
session state is deliberately “hijacked” and copied from the phone
to the insecure terminal.

Many solutions, including Google’s one-time passwords, focus
on protecting the user’s long-term credential, but do little to prevent
malware from hijacking the session after login. Similarly, sites that
allow browsing over HTTP do little to prevent session hijacking by
a network sniffer [9]. The reasoning is that a session hijack gives the
attacker a short-term session token rather than a long term password
and this short-term token is revoked as soon as the user logs out.
Therefore, session hijacking is a lesser concern. One difficulty with
this reasoning is that an infected terminal may replace the logout
button by a “no-op.” The user will be fooled into thinking that the
session was terminated, where in fact, the attacker is free to con-
tinue abusing the user’s account. Similarly, for cleartext sessions,
an attacker can simply block the logout request.

WWW 2012 – Session: Security 1 April 16–20, 2012, Lyon, France

321

http://sessionjuggler.net

Session Juggler mitigates this threat by providing a secure logout:
because the phone and the untrusted terminal share the same session
data, malware cannot prevent the user from logging out through the
phone app. When the user logs out via the phone, the website logout
process should, in theory, invalidate all session state associated with
the session, thus invalidating all session state stored on the untrusted
terminal.

Analyzing session management in the wild. To validate the ses-
sion juggling concept we begin with a number of studies of web
applications in the wild that are of independent interest. Our first
study shows that 75% of the Alexa Top 1000 sites still do not use
HTTPS on their login pages and transmit user passwords in the clear.
Users at Internet Cafes are consequently vulnerable to password
theft. Since users heavily reuse password across sites [16], an at-
tacker who learns the user password at one of these insecure sites
can easily attack the user at other sites that implement proper login.

Session Juggler can help protect users on sites that use HTTP
login. Users enter their long term credential on the phone which is
then transmitted via 3G over the air. The session is then transferred
to the user’s laptop and continues over HTTP. Since 3G data is en-
crypted over the air, the user’s credential is protected from snooping
at the Cafe. When the phone is connected on a WiFi network Session
Juggler requires the user to click through a warning before sending
the credentials over HTTP.

Since Session Juggler transfers the session from one machine
(the phone) to another (the user’s laptop or terminal), we may inad-
vertently trigger the anti-hijacking defense at the site and thereby
invalidate the session. Our second study verifies the effectiveness of
Session Juggler by manually analyzing how popular web sites bind
sessions to devices. In Section 2.2 we show that only a few sites
bind the user session to specific browser characteristics, such as an
IP address (e.g. Apple and Amazon) or the local computer time
(e.g. eBay) [14]. Our evaluation shows that Session Juggler works
on all but eight of the 64 Alexa Top 100 websites that offer a login
mechanism 1. Two of these failures were due to a bug that makes
the Android webview unable to render those sites. The last failure
was due to an aggressive browser fingerprinting that our prototype
currently does not handle. Moreover Session Juggler works flaw-
lessly with Facebook connect which ensures that it can currently be
used on over 85000 web sites [36].

Our third study looks at how web sites handle logout requests.
As discussed above, secure logout limits the window of opportunity
that an attacker has to use a hijacked session token. Once the user
suspects that hijacking is taking place he or she can use Session
Juggler’s secure logout mechanism and the session is invalidated. To
ensure that Session Juggler’s secure logout effectively protects users
we tested how web sites handle logout requests. To our surprise
we found that many popular websites including Linkedin, Blogspot,
IMDB, CNN, MSN, eBay and Yahoo!, do not properly invalidate
session tokens on logout (see Table 2 for a complete list). These
sites instruct the browser to delete the cookie client-side, but do not
invalidate the session server-side. As a result, even a passive attacker
who eavesdrops on HTTP traffic (e.g. Firesheep) can continue to
transact on the user’s account after the user clicks logout. Session
Juggler’s secure logout mechanism only works on websites that
enforce logout request on the server side. We discuss this issue in
Section 2.3.

1Some sites such as Google appear multiple times in the top 100
hence the “low” number of sites tested.

%
 o

f s
ite

 u
si

ng
 H

TT
PS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Number of sites (logarithmic)
102 103 104 105

% of sites using HTTPS to log users

Figure 1: Fraction of sites using HTTPS login as a function of
popularity. Sites listed from Alexa top 100,000

2. SESSION MANAGEMENT IN THE WILD
We begin with three studies that examine specific features of ses-

sion management at popular web sites. These studies expose several
widespread vulnerabilities, such as improper handling of logout
requests. While running the studies we discovered that Google and
Microsoft did not properly handle logout requests on their health
records services (Google Health and Microsoft HealthVault). Both
organizations quickly fixed the problem and acknowledged our find-
ings in their hall of fame [19, 28].

2.1 Secure login pages
Our first study examines the number of sites that do not use

HTTPS on the login page. Passwords at those sites are transmitted
in the clear and can be easily sniffed at open WiFi hotspots such as
Internet Cafes. Since people tend to reuse passwords across many
sites, an HTTP login page may put all of the user’s accounts at
risk. Session Juggler helps mitigate these issues by transmitting
user credential over 3G rather than the WiFI. Default 3G encryption
makes sniffing harder.

To measure the number of sites that use cleartext login we in-
spected the HTTP login pages at the Alexa top 100,000 sites an
look for sites that post the credentials over HTTP. The results are
summarized in Figure 1. The horizontal axis orders site by Alexa
popularity and the vertical axis shows the fraction of sites of that
popularity that use HTTPS login. For example, only 25% of the
Alexa top 1000 use HTTPS and the situation is worse after this: only
7% of the Alexa top 100,000 use HTTPS login.

2.2 Binding sessions to devices
Our second study examines how web sites bind sessions to de-

vices. Recall that Session Juggler transfers sessions from one device
(phone) to another (terminal or laptop). To ensure that Session
Juggler will work properly with existing sites we had to determine
whether web sites bind session tokens to client devices to prevent
session hijacking. Recall that Panopticlick [14] is a system that is
able to uniquely identify browsers. The question is whether web
sites use Panopticlick-like techniques to monitor when sessions
move from the originating browser to a new and unknown browser.
Such a move could indicate a session hijack. We note that session
migration may legitimately take place due to browser sync, where
the user moves a session from a home computer to an office com-
puter, but in these cases both machines will already be known to the
web site and this would not trigger the site’s hijack defenses.

WWW 2012 – Session: Security 1 April 16–20, 2012, Lyon, France

322

To study how web sites bind sessions to devices we created ac-
counts and manually logged in to all 64 Alexa Top 100 websites
that have a login facility (we used Firefox under Windows). Once
logged in, we clobbered various variables used by Panopticlick and
then reconnected to the site to test if the session remained active.
If not then the site was using the clobbered variable to bind to the
device. To test session binding to IP address we used two different
networks that had different address classes but belonged to the same
AS. The results are summarized in Table 1.

Defense % of Alexa100
Using HTTPS 83%
Using secure cookies 52%
Separating mobile and desktop sessions 6%
Binding session to IP address 8%
Checking local time 1%
Binding session to user-agent header 0%
Binding session to local language 0%
Logout over HTTPS 1%

Table 1: Anti-hijacking defenses at the Alexa top 100 sites

Of all the web sites we tested only gmail.com did not revert
back to cleartext HTTP after the login page. This issue received
considerable attention recently [10, 33] thanks to automated tools
released last year. As a result, Facebook, Twitter, and LinkedIn
now offer a full HTTPS version of their sites, but it is not enabled
by default. More worrisome is the fact that only a fraction of
the websites that use HTTPS use secure cookies (83% vs 52%),
which leaves them totally open to session hijacking by a network
eavesdropper.

An even smaller fraction (6%) of websites separate desktop ses-
sions from mobile sessions. That is, for most sites session tokens
generated on a desktop can be used to transact on the mobile site and
vice versa. On these sites one can transfer a session from a mobile
device to a desktop without invalidating the session. For 6% of the
sites, however, the session would be killed and therefore, Session
Juggler’s phone application emulates a desktop browser so that the
session transfer appears to be from desktop to desktop.

Surprisingly our survey reveals that only 9 websites out of the 64
most visited websites use non-basic session binding and only 5 of
them use the client IP as the binding parameter (including Amazon
and Apple). We discuss in which case Session Juggler works on
websites that perform IP binding in section 5. Only eBay uses the
local time on the client’s machine for session binding. To use Session
Juggler on a site like eBay we had to ensure that Session Juggler’s
phone application emulates the desktop’s local time. None of the
websites we tested use more sophisticated browser fingerprints (user
agent, local language, plugins) which we found surprising.

2.3 Logout procedures
Our third study examines the logout procedure at popular sites.

We thought it was obvious that when a user clicks logout web sites
should invalidate the active session server-side. To our surprise
we found that many popular web sites remove the session cookie
from the browser, but do not invalidate the session on the server.
Consequently, an attacker who somehow obtains the user’s session
token can continue to transact on behalf of the user after logout.

This has two consequences:

1. Web sites that do login over HTTPS but then revert to cleartext
HTTP can leak the session token to a network eavesdropper,
as in the Firesheep attack [9]. With improper logout the
eavesdropper can continue to transact even after the user
explicitly logs out. The user has no way to invalidate the
session token even if he or she suspect that the session was
hijacked.

2. Consider a secure web site that operates entirely over HTTPS
and requires a second factor to login, as is often the case in
healthcare settings. If the site implements improper logout
then malware on the client can steal the session token and
continue to transact after the doctor or nurse logs out of the
terminal. In effect, the session token becomes a single factor
credential that cannot be revoked by the user.

As mentioned above, many web sites implement improper logout
and this is a wide spread bug. Some web sites, including Twitter
and Amazon, default to a partial logout state after the user clicks
logout. In this state websites still accept the user’s session token and
provide basic information, but request re-authentication for sensitive
actions. Our findings, listed in Table 2, show websites that allow
users to perform sensitive operations after the user clicks logout.
This listing summarizes all the websites from Alexa-top 100 that are
not honoring logout requests on the server side. We also tested pop-
ular open-source software, such as Wikimedia, PHPBB, Wordpress,
Drupal, Cake, but all implemented logout correctly. We also found
that Google and Microsoft health record system where subject to
logout issue. Finally we analyzed the following four open-source
popular health record systems: OpenMR, FreeMed, ClearHealth,
OpenClinic. Of these four, only OpenMR was subject to the logout
issue.

The most interesting case we encountered was Google: while
Google properly implements logout for core services such as GMail
and Reader, many “side” services including Youtube, Blogger, Orkut,
and, Health do not. The reason is that each of these services retained
their custom session management system and added the standard
Google authentication system as a secondary mechanism. This dou-
ble authentication leads to problematic logout issues. For example,
after logout the session token could still be used to edit the user’s
blog posts on Blogger but could not be used to access Gmail data.

Another interesting case is Twitter. As discussed earlier, Twit-
ter’s mobile site is different from its main site. The two sites have
different session management systems: while the main Twitter site
correctly implements logout requests, the mobile site does not. This
is another example in a general theme showing that mobile sites
have weaker security than their desktop counterparts [32].

Is poor logout management a security vulnerability? For sites
that login over HTTPS but then move to HTTP, poor logout is a
significant risk. For other sites there is no clear position on this as
was apparent from our discussions with affected companies. Google
and Microsoft treated their respective health service logout issue
as a vulnerability and quickly fixed the problem. As far as we
know, Microsoft did not fix the Hotmail issue. Other companies
who responded to us acknowledged the issue, but said that it was
not a priority because of the lack of attack surface and the heavy
cost of changing their session management infrastructure. From
the Session Juggler perspective, logout issues are vulnerabilities
because it prevents Session Juggler secure logout functionality to
work properly.

WWW 2012 – Session: Security 1 April 16–20, 2012, Lyon, France

323

Site Sensitive Action Allowed After Logout
health.google.com View and edit health record
healthvault.com View and edit health record
Linkedin Editing and saving profile
Yahoo Accessing and sending emails
Hotmail/MSN Accessing and sending emails
Blogger.com Posting a blog post
Ebay Bidding on an auction
Flickr Uploading photos
wordpress.con Posting a blog post
IMDB Editing and saving profile
ask.com Editing and saving profile
cnn.com Editing and saving profile
conduit.com Editing and saving profile
megaupload.com Uploading files
mediafire.com Uploading files
4shared.com Uploading files
cnet.com Editing and saving profile
weather.com Editing and saving profile
imageshack.us Uploading photos
OpenMR Accessing, changing medical records

Table 2: Sites with improper logout

3. JUGGLING
We now describe how Session Juggler works. We start by de-

scribing step by step how the session transfers occur from the user’s
perspective. Then we describe in detail how the juggling protocol
works and how its participants are implemented. Finally we review
the security benefits of using Session Juggler.

3.1 Threat Model
The goals of Session Juggler are two fold. First, it ensures that

the attacker cannot learn the the user’s long term credential. In
particular, Session Juggler mitigates the risk of a man-in-the-middle
attack against websites that transmit user login credentials in the
clear. Session Juggler does so by transmitting the user’s creden-
tials over a 3G connection that is encrypted and harder to intercept.
Second, Session Juggler provides a trusted logout to invalidate an
ongoing session for sites that securely implement logout.

Session Juggler does not protect against post-login attacks other
than by providing a trusted logout. It should be noted that since many
web sites only use HTTPS for the login page and then drop back
to HTTP, session hijacking is currently easily done by a network
attacker using standard tools [10] without the need for client-side
malware. Often users have no recourse against a session hijack,
even if they are aware that their session was hijacked — clicking
“logout” can be intercepted by a network attacker and blocked (on
sites we tested that fall back to HTTP the logout action was also over
HTTP). In contrast, our secure logout will immediately invalidate
the session once the user detects the attack.

3.2 User Experience
A storyboard of the user experience with Session Juggler is shown

in figure 22. As shown there, users login as follows:

1. Initiate the Juggling: First the user navigates on the un-
trusted terminal to the site she wishes to log on. In our exam-
ple our user goes to http://www.facebook.com. Then
instead of entering her credentials on the untrusted terminal,
she clicks on the Session Juggler bookmarklet. In the figure 2,
the bookmarklet button is located on the bookmark bar and is
highlighted in green. Clicking the bookmarklet creates a div
which contains a QR code and an input box as shown in the
figure (highlighted in green).

2. Selecting the Juggling Method Once the bookmarklet UI is
displayed on the targeted web site, the user starts the Session
Juggler application on her phone. There she can choose be-
tween the two ways of initiating the juggling: the visual login
mode that will use the QR code or the pin login mode that
will use the bookmarklet input box. In the visual mode, the
phone camera is used to read the QR code from the page to
get all the necessary information to initiate the juggling. As
we will see in more detail in the next section, the information
exchanged includes the user agent, the url, and an AES key.
With the pin login mode, the phone generates an AES key that
the user then must input in the bookmarklet input box. While
generating the key on the phone and inputting on the browser
creates one more round of exchanges in the juggling protocol,
it is generally easier to type a string on the terminal keyboard
than on the phone. During our tests, we didn’t notice any
visible difference between using the visual login and the pin
login mode in terms of latency.

3. Giving consent Once the juggling is initiated, before going to
the site, the session juggler app displays a confirmation dialog
showing the website favicon and domain name and asks the
user to confirm that it is the website where she wants to logon.
This confirmation dialog is used to mitigate phishing attacks
and in particular a phishing attack where the malware changes
the URL requested by the bookmarklet. Session Juggler also
checks the URL against the google blacklist as an additional
layer of defense.

4. Login to the site Once the user has given her consent, the
Android app navigates to the login page and the user logs
in on the phone. At this point, the Android native password
manager will ask the user if she wants to login. This step
is only required during the first login since the password
manager saves the credentials. On subsequent logins the
interaction with the phone this step is skipped.

5. Transferring the Session After successful login on the phone,
the last step is to click on the transfer session button (high-
lighted in green on the figure) to transfer session state to the
insecure terminal. We need to ask the user to click the trans-
fer button since some web sites, such as bankofamerica.com
and sfcu.org, have a multi-step login process where the user
enters her ID on the first page and the password on a subse-
quent page. Consequently, only the user can tell when login
is complete.

2The screenshots used in this storyboard were made using Firefox
and our open source Android implementation of Session Juggler.

WWW 2012 – Session: Security 1 April 16–20, 2012, Lyon, France

324

http://www.facebook.com

Figure 2: Session Juggler workflow illustrated

6. Enjoying the Site Less than a second after the transfer ses-
sion button is clicked, the bookmarklet resumes the session on
the insecure terminal and the user can enjoy her session. The
user’s login and password were never entered on the insecure
terminal. All the terminal sees is the ephemeral session token.

Setup phase. Setting up Session Juggler is straightforward: On the
Android phone, installing the app is as easy as installing any other
app from the Android Market. To install the bookmarklet on the
untrusted terminal the user has simply to remember the bookmarklet
URL or use the short url associated with it. As a reminder, a short
URL to the bookmarklet is displayed in the setting menu of the
Android app.

Logging out. Since the session was first initiated on the phone, the
phone has the session token and can, at a later time, issue a logout
request for the user when it is asked to do so. This logout request,
if properly honored, will invalidate the session token server-side
thereby terminating the session on both the phone and the untrusted
terminal. Note that in practice, as discussed in section 2, this might
not work as some websites, such as Linkedin, that do not properly
honor logout requests.

Until a standard format to describe logout URL is adopted, Ses-
sion Juggler has no way of automatically finding the logout URL.
This means that we have to resort to requiring the user to logout man-
ually. To make this process easier, we implemented two workarounds.
First, for popular sites like Facebook, Google, Linkedin, and Twitter,
we built a database of logout URLs that give a single-click logout.
Second, Session Juggler learns the URLs that the user previously
used to logout of a given website.

After the first time logout, Session Juggler provides a single-click
logout button on the phone. Note that in either case we show the
resulting page so the user can visually verify that logout succeeded.

3.3 The Juggling protocol
Now that we have explained what the user experience with Session

Juggler is, we describe how the juggling if effectively implemented.
We start by describing the participants involved in the juggling and
then we describe the juggling protocol step by step.

3.3.1 Juggler Principals
Overall juggling a session involves three main principals, which

are depicted in figure 3: a web service named "Blackboard" after
the design pattern of the same name [40], a phone application, and
a bookmarklet on the browser in the insecure terminal.

The Bookmarklet.
The bookmarklet is a small piece of javascript that allows us

to perform computations on the untrusted terminal browser. Us-
ing a bookmarklet is commonly used by many websites, including
Wordpress and Readable, to provide quick cross browser access to a
feature that requires executing javascript without requiring the user
to install anything on the browser. As mentioned earlier, when the
user starts using an untrusted terminal, she has to visit the book-
marklet website and drag and drop a link to the bookmarklet on
her bookmark bar. When the user clicks on the bookmarklet, the
javascript code is executed in the context of the site, which allows
the bookmarklet to read the page location and content, set cookies,
and navigate to the logged-in page once the juggling is done.

WWW 2012 – Session: Security 1 April 16–20, 2012, Lyon, France

325

Our bookmarklet uses the SJCL Javascript crypto library [37] to
encrypt/decrypt requests with AES and can be downloaded from
http://ly.tl/sj.

The Blackboard.
The blackboard is a web service that facilitates the exchange of

information between the phone and the terminal. This “middleware”
which obeys the “Blackboard” design [40] pattern is needed be-
cause often the phone can’t be reached directly by the terminal. For
instance, the phone and the terminal might be on two different net-
works (3G / WiFi). Accordingly, the bulletin board can be viewed
as a convenient way to write and read encrypted data and therefore
does not need to be trusted. Note that the bulletin board can be any
web service that allows a user to read and write data (i.e. Twitter).
It can even be an HTTP server on the phone if the terminal is able
to connect to it.

The blackboard is a very simple piece of code that can be imple-
mented in less than 200 lines. In our short PHP implementation,
each juggling session is identified by a parameter called ID that
allows our blackboard to know which data to store and retrieve.
Having a unique identifier for each juggling session is all it is takes
to allow our blackboard to handle simultaneous users and sessions.
Juggling data are stored in a simple file that is wiped after 24h by a
cron script. Note here that all the data stored in the blackboard are
encrypted so the blackboard can’t tamper with any juggling session
data (except to block the session transfer by erasing files).

As a security precaution, we limit the size of the data written
to the file, as the amount of information exchanged during the
juggling is very small. Note that the bookmarklet javascript is
subject to the same origin policy and therefore the blackboard needs
to authorize cross-domain requests via pre-flight requests [39] to
allow the bookmarklet to read content. For older browsers that don’t
implement cross-domain requests, it is possible to use "hacks" such
as the external script include trick to circumvent the same origin
policy [5].

The trusted phone application. The phone application is the
trusted piece of software that is used to logon to the website re-
quested by the user. In addition, the phone application is responsible
for transferring the session data to the bookmarklet through the
blackboard and for providing a secure logout system. We have im-
plemented our trusted application on Android using the standard
framework. However, because the application needs to impersonate
the untrusted terminal browser (i.e spoofing the user-agent), the
standard webview is not directly usable. We ended up doing the
HTTP requests ourselves and then passing the returned content to
the web view to render for the user.

3.3.2 Protocol
As illustrated in section 3.2 , juggling can be initiated using a QR

code (visual login) or by entering a pin code (pin login). Figure 3
describes the juggling protocol when the QR code is used, and the
figure 4 depicts the protocol when a pin code is used. Because the
visual login protocol requires one less exchange than the pin code
protocol, we start by describing it.

2. Login

5. Resume session

4. Fetch
 {Session data} k

Phone Blackboard Insecure terminal Target website

Out of band exchange
HTTP(S) traffic
Encrypted data

1. QR code exchange

3. {Session data}k

Figure 3: QR mode message flow

The Visual Login Protocol. As visible in figure 3, the visual login
version of the juggling protocol is achieved in five steps:

1. Transmitting Data via the QR Code: When the user clicks
on the bookmarklet, it generates a 128 bit AES key k using the
crypto library (SJCL). k will eventually be used to encrypt the
session data. Then the bookmarklet computes the id required
to use the blackboard as follows: idi = HMACk(0). When
this is done the bookmarklet encodes the key k, the browser
version, the untrusted terminal OS version, and the target URL
into a QR code. Finally the bookmarklet displays the QR code
on top of the web site in the browser. The bookmarklet will
keep polling the blackboard via XHR requests until it receives
session data from the phone via the blackboard. On the phone
side, the user input to the application the QR code content by
taking a picture of the untrusted terminal screen.

2. Login to the Site: Using the site URL supplied by the book-
marklet via the QR code, the application navigates to the
login page. Our application uses the browser and OS version
supplied by the bookmarklet to spoof the user-agent header.
This is mandatory because if we don’t set the user-agent
appropriately, the target web site might respond with the mo-
bile version of the site or may later refuse the transfer of the
session because of the site unlikely use of anti-hijacking de-
fenses (See section 2). Once the user has confirmed she wants
to login, the page is loaded and the user’s password manager
asks the user if she wants to supply her credentials.

3. Session Acquisition Once the user has successfully supplied
her credentials, the web site redirects the mobile browser to
the logged-in page and sets the cookies pertaining to the user’s
session. Once the logged-in page is loaded and the user has
clicked on "transfer session," the session data are gathered
by the application, encrypted with the key k and posted to
the blackboard under the id idi. The session data contains
the URL with all its arguments and the cookies. Note that
the Android framework does not offer a method to read all
the cookies’ information, such as the cookie path, so we had
to use the CookieSyncManager class to force Android to
store all cookies present in RAM into the “webview.db”
sqlite database and then run a SQLite query to retrieve them.

WWW 2012 – Session: Security 1 April 16–20, 2012, Lyon, France

326

http://ly.tl/sj

3. Login

6. Resume session

5. Fetch
{Session data} k

Phone Blackboard Insecure terminal Target website

Out of band exchange
HTTP(S) traffic
Encrypted data

1. {Request data}k
2. Fetch

{Request data} k

4. {Session data}k

Figure 4: Pin-code message flow

4. Session Transfer A few milliseconds after the phone has
successfully posted the encrypted data on the blackboard, the
bookmarklet polls the blackboard by supplying the id idi, and
fetches the data.

5. Resuming the Session The bookmarklet decrypts the data
polled from the blackboard using the key k, sets the cook-
ies in javascript using the document.cookie object, and then
navigates to the page by setting the document.location to the
logged-in url page. The browser reacts to this by navigating to
the logged-in page and the session is successfully transferred
to the untrusted browser/terminal.

The pin login protocol. As visible in figure 4, the pin code juggling
protocol is very similar to the visual mode except that it requires an
extra exchange (steps 1 and 2) at the beginning. When the pin code
protocol is used the AES key k is generated on the phone and then
entered via the keyboard (128bits in hex) on the untrusted terminal’s
browser.

Accordingly, after the key is exchanged, the phone has no idea
which website the user wants to login to and therefore the extra
exchange is needed so the bookmarklet can tell the phone appli-
cation which website the user wants to log into. The content of
this exchange is pretty straightforward: the bookmarklet takes all
the information that was encoded into the QR code and encrypts it
using the key k. Then it posts it on the blackboard using the id idi.
A few milliseconds later the phone polls the request data from the
blackboard by requesting data for the id ki. From there the protocol
is similar to the visual login protocol.

3.4 Security Analysis
Let’s now analyze why Session Juggler improves login security.

First and foremost, Session Juggler improves the security by limit-
ing malware’s effectiveness by allowing it only to capture short-lived
session credentials rather than long term ones. During the juggling
the user’s long term credentials are never inputted nor transferred
to the insecure terminal, so even if the terminal is infected with
malware, the attacker learns nothing about these credentials.

Similarly Session Juggler effectively mitigates the risks of us-
ing an insecure network (Sniffing, SSL strip) by transmitting user
credentials over a 3G network which is encrypted.

The blackboard does not know the key k and does not see the
key exchange, as it is done through an out of band exchange (QR
code/pin code input). Thus the blackboard is unable to decrypt the
session data. Accordingly an attacker has no incentive to create a
rogue blackboard since it will only contain useless encrypted data.
The only advantage that a rogue blackboard offers to the attacker
is that it allows him to prevent the user from logging in by erasing
all data. However since nothing prevents the user from switching
blackboards, there is little incentive to do so. On the other hand,
the owner of the untrusted computer’s malware has no incentive to
prevent the session from being be executed as it will still get him
the short terms credentials.

In order to steal the long term credentials, the malware owner
can resort to phishing the user by replacing the url sent by the
bookmarklet with a malicious url. This kind of phishing is actually
less dangerous than the regular phishing attacks because Session
Juggler has three phishing defenses– a user consent popup that
emphases the domain request, a domain blacklist check, and a
password manager that only discloses passwords to the right url–
already built-in on Android phones, leaving them out of harm’s
way.

Finally, because the phone and the untrusted terminal share the
same session data, the malware can’t prevent the user from logging
out through the phone app, which leaves the malware owner with
a smaller window of opportunity. Note that many websites, includ-
ing Amazon and Twitter, require users to input their passwords on
significant changes, which limits even further the effectiveness of
hijacking a session.

4. EVALUATION
Our evaluation shows that Session Juggler can be successfully

used to login on 87% of the Alexa Top-100 websites. Additionally
we also have a 100% success while using Session Juggler to login
on websites that use Facebook connect, which implies that Session
Juggler can be used to login on more that 85000 sites [36].

We manually tested if we were able to use Session Juggler and
Firefox to login on the 64 Alexa Top-100 websites that have a login
system. The relatively low number of sites that have login capabili-
ties is partially explained by the fact that Google appears multiple
times in the Alexa top-100 rankings due to its various local versions.
We only counted all these versions as one site so as not to skew the
results in our favor.

We chose the visual mode to verify that websites’ designs do
not interfere with the QR code reading process. Overall we can
report that Session Juggler is a viable solution as we were able to
successfully perform a session transfer for 87% of the most popular
websites in the world. Moreover Session Juggler works perfectly
with Facebook connect which implies that, according to the latest
statistics, Session Juggler can be used to login successfully on more
than 80000 websites [36]. The three case where Session Juggler
fails (msn.com, megaupload.com and rapidshare.com) provide a
couple of interesting observations that are discussed below.

WWW 2012 – Session: Security 1 April 16–20, 2012, Lyon, France

327

Dealing with Mobile Session Separation. As mentioned in sec-
tion 2, websites like twitter.com and eBay differentiate between
authenticated sessions depending on whether the client is a smart-
phone or a regular web browser. Because they use the user-agent
header to distinguish between the two, we had to modify our early
prototype so the terminal browser’s information is encoded into the
transfer request. On the Android side we had to write custom a
HTTP request code to emulate as closely as possible the terminal
side headers, thus concealing the fact that the login was performed
by a smartphone.

Finding Webview Limitations. Unfortunately, 2 out of the 3 Ses-
sion Juggler failures are not directly fixable by us as they stem
from the fact that the Android WebView is unable to render the full
version of msn.com and rapidshare.com. Our other failure is due to
the fact that megaupload.com automatically gets redirected to the
website’s mobile version, preventing session transfers. It is likely
that Megaupload performs some kind of browser fingerprinting in
javascript that requires us to develop a way to clobber the webview
javascript variables. As discussed below, dealing with javascript
browser fingerprinting is part of the extensions we propose for this
work. Note that the megaupload fingerprinting behavior was not de-
tected during our survey of the website hijacking defenses because
megaupload does not use it for session binding.

Handling Secure Cookies. The first version of our Android appli-
cation extracted cookies from the WebView object directly using the
CookieManager interface. During our evaluation we found out
that this mechanism failed to retrieve cookies marked ‘secure’. We
observed this odd behavior while testing authentication on bing.com,
where certain cookies like KievRPSSecAuth were missing on
the client browser even after the session transfer. In its current ver-
sion, our application fetches the cookies directly from the cookie
repository via the Sqlite interface as explained in section 3.

The Third Party Login Challenge. While testing we observed
that, for flickr.com and bing.com, the actual authentication is done
in a different domain (for example yahoo.com for flickr.com). While
Session Juggler works with third-party login, we unfortunately had
to enter our credentials twice, once on the domain and once an third
party domain, to make the transfer work. Finding a more elegant
solution to this problem is an open question. Note that this issue
does not affect Facebook connect.

5. DISCUSSION
Before concluding, we discuss some extensions we made to im-

prove Session Juggler and discuss our plan to deal with more ag-
gressive session binding mechanisms if such mechanisms are put in
place in the future.

Improving Usability via Long Term Pairing. One of the draw-
backs of our architecture is that it requires the user to exchange a
new key between the phone and the desktop every time the user
want to login. If appropriate, this process can be made easier by
using a long-term pairing between the phone and the desktop. Due
to security concerns, the pairing key K cannot be stored in the book-
marklet [3], but can be stored in a browser extension, if one can be
installed. At setup the key is copied to the phone via a QR code.
Once the setup is completed, the phone app runs a service that polls
the blackboard regularly and prompts the user to login as soon as it
polls a new request. This might prove for computers that the user
use frequently but do not fully trust such as a family’s computer or
a corporate one.

Improving Security via Cookie Editing. As sessions are trans-
ferred from the phone to the terminal, our phone application re-
writes the transferred cookies so they become session cookies by
removing the expiration date. Removing the expiration date im-
proves user privacy as the cookies will not be written to disk. It also
slightly improves the user’s security because if the user forgets to
logout but still closes the browser, the cookies are removed from
memory.

Dealing with IP Binding. As mentioned in section 2.2, some web-
sites bind the session to a specific IP. In this case the main options
is to have the phone connected on the same network. However con-
necting the phone to the same network might not always possible.
Another potential issue with this approach is the case where the
website doesn’t use HTTPS to transmit the credentials. In this case,
the benefit of using session-juggler to protect against man-in-the-
middle attack disappears as the 3G connection ceases to be used as
an alternative-encrypted channel. We plan to add to Session Juggler
a confirmation dialog when the user tries to send credential over
HTTP on a WiFI connection.

Dealing with Aggressive Fingerprinting. While none of the web
sites we tested use aggressive browser fingerprinting to bind a ses-
sion to a browser, this may change in the future. More aggressive
browser fingerprinting (such as testing the screen resolution, in-
stalled plug-ins, etc.) will make it harder to move the session from
the phone to the terminal. Dealing with this kind of fingerprint-
ing will require a significant additional development effort so the
phone can impersonate an arbitrary version of Flash or Java. An
alternative option would be to turn Java or Flash off on the terminal
side. However since none of this is needed today — web sites do
not fingerprint the browser for session binding — we leave this as
interesting future work.

6. RELATED WORK

6.1 Previous Approaches
In this section we present the previous work pertaining to using a

trusted device such as a PDA or a phone to login from an untrusted
terminal and explain why it is not sufficient for our purposes. Over-
all, as visible in the summary table 3, as far as we can tell all the
proposals to date require at least a server-side or terminal-side mod-
ification. It is only by leveraging the advance in mobile browsers
and using session hijacking attack principle in an unexpected (and
benevolent!) way the that Session Juggler is able to use a smart-
phone to login with no terminal-side or server-side modifications.

In a seminal work [7], the authors propose to use the Palm Pilot
as a second authentication factor by implementing a one-time pass-
word generator on it. This work, as well as all related subsequent
works requires server modifications. In [29], the authors propose
using a PDA as a trusted third party by connecting it to the insecure
terminal via USB. This scheme requires terminal-side modifications
and server-side modifications. In [35], the authors propose using a
mobile phone as a trusted input device to input data on untrusted
terminal. The phone and the terminal are connected via a so-called
“thin-client server” that acts as a relay. Installing this thin-client re-
quires a terminal-side modification to be installed and a server-side
modification to be used.

In [27] the authors propose the MP-Auth protocol that works by
storing the user’s long-term secret on a mobile device. The MP-
Auth protocol requires server-side changes and needs the untrusted
browser to communicate with the phone either via bluetooth or USB,

WWW 2012 – Session: Security 1 April 16–20, 2012, Lyon, France

328

[7] [29] [35] [27] [17] [34] [38] Session Juggler
Year 1999 2004 2006 2007 2008 2008 2009 2012
Trusted device Palm Pilot PDA Phone Phone Phone Phone Phone Phone
Server-side modification X X X X X
Terminal-side modification X X X X X X X
Connection type USB USB Net USB/BT USB Net NFC 3G/WiFi
Hardware needed TPM TPM/NFC

Table 3: Comparison to previous approaches

which requires a client-side modification that involves installing a
binary and a Firefox extension.

In [17] the authors combine the use of the terminal Trusted Plat-
form Module (TPM), virtual machine, and phone to convince users
they can trust the executed virtual machine. While this approach
involves a huge-client side modification (using a specific hyper-
visor) and the presence of specific hardware, it is one of the first
approaches, if not the first approach, to not require server side
changes. The idea of using phone-attested virtual machine on the
terminal-side was extended in 2009 [38] to use NFC (Near Field
Communication) as a direct channel for the TPM’s identity proof.

In [34], the authors propose splitting the display between the
untrusted terminal and the phone. Their scheme requires a terminal-
side modification that involves installing a Firefox extension. The
aforementioned extension acts as a RDC (Remote Desktop Client)
agent that forwards data to the phone. This scheme also requires a
server-side modification so the web site is "separation aware." This
scheme additionally requires an HTTP daemon on the phone which
implies that there is a direct connection between the phone and the
untrusted terminal.

Another approach, followed by some websites (such as Google),
is to allow users to generate a list of passwords that are only usable
one time. This approach requires a server-side modification and
forces the user to carry a list of passwords for each site he or she
wants to use. This approach also does not address the issue that a
malware can prevent the user from logging out.

Finally, while three-leg protocols such as OAuth [11] are becom-
ing the standard to delegate permission to "semi"-trusted applica-
tions, it is not a suitable approach to deal with untrusted terminals as
the pairing process involves supplying the long term credentials at
some point during the pairing process. This approach also requires
server-side and terminal-side modifications.

6.2 Further Related Work
The Phone as a Second Factor. In [13] the authors survey the type
of devices that can be used as second factors. In [6] the authors
propose to use the phone as a one-time password generator. This
work proposes a solution that is similar to the SecurID one time
password solution [26]. In [20] the authors perform a formal analysis
of protocols that use a phone as a second factor.

Session Hijacking. Session hijacking by a network attacker can be
mitigated in part by HTTPS and marking all cookies as secure [25].
Other ideas include [24] which proposes to defend against session
hijacking using a proxy, [15] which advocates end-to-end secu-
rity, [22] which uses client-side policies to defend against session
hijacking, and [2] which proposes an elegant idea for embedding
a session token in the URL fragment identifier. In [18] the authors

study methods to detect passive WiFi session hijacking by leverag-
ing physical layer properties. Defenses against session hijacking by
malware are based on “transaction confirmation” and such systems
are presented in [21, 30, 31] and used by authentify.com.

Browser Sniffing. Browser fingerprinting is a very active field that
includes a wide set of techniques. For instance Panopticlick [14]
uses installed fonts, plug-ins, time zone, and many other parameters
to identify the browser. Companies such as 41st Parameters [1] sell
this kind of technology to websites for fraud detection. In [4], the
authors showed that web browsers can still be tracked even with the
private mode enabled.

Storing Passwords on Phones. Storing passwords on phones is an
active area. In [8] the authors propose to hide passwords in plain
sight by creating thousands of decoys that are indistinguishable
from the real password set. They also propose to use “honey words”
to defend against online attacks. A related concept is mentioned
in [12].

7. CONCLUSION
In this paper we present Session Juggler which is the first univer-

sal solution to perform a secure web login on an untrusted terminal.
Session Juggler is universal as it does not requires any website mod-
ification and do not requires any specific software on the terminal
beside a modern browser. Our evaluation shows that Session Juggler
works with every Alexa Top 100 websites except eight. Session
Juggler also works flawlessly with Facebook connect, which allows
users to use it on more than 85000 websites. Finally Session Juggler
is the first solution that provides a trusted logout mechanism that
ensures that the user session will be killed as soon as the user is
finishing using the website.

Acknowledgments
The authors thank Charlie Reis and Collin Jackson for many helpful
discussions about this work. This work was supported by NSF,
DARPA, and an AFOSR MURI grant.

8. REFERENCES
[1] 41st Parameters. Deviceinsight.

http://www.the41.com/land/DeviceID.asp.
[2] B. Adida. Sessionlock: Securing web sessions against

eavesdropping. In World Wide Web, 2008.
[3] B. Adida, A. Barth, and C. Jackson. Rootkits for javascript

environments. In Proc. of 3rd USENIX Workshop on Offensive
Technologies (WOOT 2009), 2009.

[4] G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh. An
analysis of private browsing modes in modern browsers. In
Usenix Security, 2010.

[5] O. Alliance. Ajax and mashup security. Technical report,
OpenAjax Alliance, 2008.

WWW 2012 – Session: Security 1 April 16–20, 2012, Lyon, France

329

http://www.the41.com/land/DeviceID.asp

[6] F. Aloul, S. Zahidi, and W. El-Hajj. Two factor authentication
using mobile phones. In Computer Systems and Applications,
2009. AICCSA 2009. IEEE/ACS International Conference on,
pages 641–644. IEEE, 2009.

[7] D. Balfanz and E. Felten. Hand-held computers can be better
smart cards. In Proceedings of the 8th conference on USENIX
Security Symposium-Volume 8, page 2. USENIX Association,
1999.

[8] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh.
Kamouflage: Loss-resistant password management. In Proc.
of ESORICS’10, 2010.

[9] E. Butler. Firesheep.
http://en.wikipedia.org/wiki/Firesheep.

[10] E. Butler and I. Gallagher. Hey web 2.0: Start protecting user
privacy instead of pretending to. ToorCon 2010, 2010.
sandiego.toorcon.org.

[11] O. community. Request for comments: 5849 the oauth 1.0
protocol. http://tools.ietf.org/html/rfc5849,
2010.

[12] D. Dasgupta and R. Azeem. An Investigation of Negative
Authentication Systems. In Proceedings of 3rd International
Conference on Information Warfare and Security.

[13] D. de Borde and S. Consulting. Two-factor authentication.
Siemens Enterprise Communications UK-Security Solutions,
2008.

[14] P. Eckersley. How unique is your web browser? In Proc. of
PETS 2010, number 6205 in LNCS, pages 1–18, 2010.

[15] U. Erlingsson, B. Livshits, and Y. Xie. End-to-end web
application security. In Proceedings of the 11th USENIX
workshop on Hot topics in operating systems, pages 1–6.
USENIX Association, 2007.

[16] D. Florencio and C. Herley. A large-scale study of web
password habits. In Proceedings of the 16th international
conference on World Wide Web, pages 657–666. ACM, 2007.

[17] S. Garriss, R. Cáceres, S. Berger, R. Sailer, L. van Doorn, and
X. Zhang. Trustworthy and personalized computing on public
kiosks. In Proceeding of the 6th international conference on
Mobile systems, applications, and services, pages 199–210.
ACM, 2008.

[18] R. Gill, J. Smith, and A. Clark. Experiences in passively
detecting session hijacking attacks in IEEE 802.11 networks.
In Proceedings of the 2006 Australasian workshops on Grid
computing and e-research-Volume 54, pages 221–230.
Australian Computer Society, Inc., 2006.

[19] Google. Google hall of fame.
http://www.google.com/about/corporate/
company/halloffame.html.

[20] A. M. Hagalisletto. Analyzing two-factor authentication
devices.

[21] C. Jackson, D. Boneh, and J. Mitchell. Transaction generators:
Root kits for the web. In Proc. of the 2nd USENIX Workshop
on Hot Topics in Security, 2007.

[22] M. Johns. SessionSafe: Implementing XSS immune session
handling. Computer Security–ESORICS 2006, pages 444–460,
2006.

[23] N. Johnston. Scareware haunts airport internet terminals, 2010.
symantec.com/connect/blogs/
scareware-haunts-airport-internet-terminals.

[24] F. Kerschbaum. Simple cross-site attack prevention. In
Security and Privacy in Communications Networks and the

Workshops, 2007. SecureComm 2007. Third International
Conference on, pages 464–472. IEEE, 2008.

[25] V. Khu-smith and C. Mitchell. Enhancing the security of
cookies. Information Security and Cryptology—ICISC 2001,
pages 197–230, 2002.

[26] R. Laboratories. One-time password specifications (otps).
http:
//www.rsa.com/rsalabs/node.asp?id=2816.

[27] M. Mannan and P. Van Oorschot. Using a personal device to
strengthen password authentication from an untrusted
computer. In Proceedings of the 11th International
Conference on Financial cryptography and 1st International
conference on Usable Security, pages 88–103.
Springer-Verlag, 2007.

[28] Microsoft. Security researcher acknowledgments for microsoft
online services. http://technet.microsoft.com/
en-us/security/cc308589, Oct 2011.

[29] A. Oprea, D. Balfanz, G. Durfee, and D. Smetters. Securing a
remote terminal application with a mobile trusted device.
2004.

[30] S. N. Patel, J. S. Pierce, and G. D. Abowd. A gesture-based
authentication scheme for untrusted public terminals. In UIST

’04: Proceedings of the 17th annual ACM symposium on User
interface software and technology, pages 157–160, New York,
NY, USA, 2004. ACM.

[31] H. Qian, C. Surapaneni, S. Dispensa, and D. Medhi. Service
management architecture and system capacity design for
phonefactor: A two-factor authentication service. Integrated
Network Management, 2009. IM ’09. IFIP/IEEE International
Symposium on, pages 73 –80, jun. 2009.

[32] G. Rydstedt, B. Gourdin, E. Bursztein, and D. Boneh.
Framing attacks on smart phones and dumb routers:
tap-jacking and geo-localization attacks. In Proceedings of the
4th USENIX conference on Offensive technologies, pages 1–8.
USENIX Association, 2010.

[33] E. Security. Sidejacking.
http://erratasec.blogspot.com/2008/01/
more-sidejacking.html, 2008.

[34] R. Sharp, A. Madhavapeddy, R. Want, and T. Pering.
Enhancing web browsing security on public terminals using
mobile composition. In Proceeding of the 6th international
conference on Mobile systems, applications, and services,
pages 94–105. ACM, 2008.

[35] R. Sharp, J. Scott, and A. Beresford. Secure mobile
computing via public terminals. Pervasive Computing, pages
238–253, 2006.

[36] Shishir. Top 30 interesting facebook figures.
http://www.shishirk.com/2011/02/
interesting-facebook-figures/, Feb 2011.

[37] E. Stark, M. Hamburg, and D. Boneh. Fast symmetric
cryptography in javascript. In Proc. of ACSAC 2009, 2009.

[38] R. Toegl. Tagging the turtle: local attestation for kiosk
computing. Advances in Information Security and Assurance,
pages 60–69, 2009.

[39] A. van Kesteren. Cross-origin resource sharing. Technical
report, W3C, July 2010.

[40] Wikipedia. Blackboard system. http://en.wikipedia.
org/wiki/Blackboard_system.

WWW 2012 – Session: Security 1 April 16–20, 2012, Lyon, France

330

http://en.wikipedia.org/wiki/Firesheep
sandiego.toorcon.org
http://tools.ietf.org/html/rfc5849
http://www.google.com/about/corporate/company/halloffame.html
http://www.google.com/about/corporate/company/halloffame.html
symantec.com/connect/blogs/scareware-haunts-airport-internet-terminals
symantec.com/connect/blogs/scareware-haunts-airport-internet-terminals
http://www.rsa.com/rsalabs/node.asp?id=2816
http://www.rsa.com/rsalabs/node.asp?id=2816
http://technet.microsoft.com/en-us/security/cc308589
http://technet.microsoft.com/en-us/security/cc308589
http://erratasec.blogspot.com/2008/01/more-sidejacking.html
http://erratasec.blogspot.com/2008/01/more-sidejacking.html
http://www.shishirk.com/2011/02/interesting-facebook-figures/
http://www.shishirk.com/2011/02/interesting-facebook-figures/
http://en.wikipedia.org/wiki/Blackboard_system
http://en.wikipedia.org/wiki/Blackboard_system

	1 Introduction
	2 Session Management in the Wild
	2.1 Secure login pages
	2.2 Binding sessions to devices
	2.3 Logout procedures

	3 Juggling
	3.1 Threat Model
	3.2 User Experience
	3.3 The Juggling protocol
	3.3.1 Juggler Principals
	3.3.2 Protocol

	3.4 Security Analysis

	4 Evaluation
	5 Discussion
	6 Related Work
	6.1 Previous Approaches
	6.2 Further Related Work

	7 Conclusion
	8 References

