
Session Juggler
Elie Bursztein, Chinmay Soman, Dan Boneh, John Michell

Stanford University / Google

1

Elie Bursztein Slide deck 2010 http://ly.tl/t1

About this presentation

Date: 19 April 2012

Conference: WWW 2012

URL: http://ly.tl/p23 if you have any question

Feel free to contact me

http://ly.tl/t1
http://ly.tl/t1
http://ly.tl/p23
http://ly.tl/p23

Elie Bursztein Slide deck 2010 http://ly.tl/t1

Elie Bursztein Slide deck 2010 http://ly.tl/t1

Elie Bursztein Slide deck 2010 http://ly.tl/t1

Elie Bursztein Slide deck 2010 http://ly.tl/t1

Elie Bursztein Slide deck 2010 http://ly.tl/t1

\Afraid of the Dark ?

Elie Bursztein Slide deck 2010 http://ly.tl/t1

\Afraid of the Dark ?

Elie Bursztein http://elie.im Session Juggler WWW 2012

Looking for something ?

http://elie.im
http://elie.im
http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein http://elie.im Session Juggler WWW 2012

Looking for something ?

http://elie.im
http://elie.im
http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein http://elie.im Session Juggler WWW 2012

HTTPS adoption
%

 o
f s

ite
 u

si
ng

 H
TT

PS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Number of sites (logarithmic)
102 103 104 105

% of sites using HTTPS to log users

http://elie.im
http://elie.im
http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein http://elie.im Session Juggler WWW 2012

Ephemeral login

• Can’t trust the client at all

• Work for every browser every site

• Use a secure device / secure channel (phone)

http://elie.im
http://elie.im
http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein http://elie.im Session Juggler WWW 2012

Not that easy

[5] [24] [29] [21] [12] [28] [31] this paper
year 1999 2004 2006 2007 2008 2008 2009 2010

Trusted device Palm Pilot PDA Phone Phone Phone Phone Phone Phone
Requires server-side changes X X X X X
Requires client-side changes X X X X X X X

Connection type USB USB Net USB/BT USB Net NFC 3G/WiFi
Hardware needed TPM TPM/NFC

Table 1: Comparison to previous approaches

as session-cookies so that closing the terminal browser erases the
transferred cookies.

In the foreseeable future it is possible that web sites will imple-
ment stronger binding of session tokens to the user’s browser, for
example, by using browser fingerprinting methods such as Panop-
ticlick [10]. Panopticlick uses installed fonts, plug-ins, time zone,
and many other parameters to identify the browser. An authenticated
session token will become invalid if it is ever used on a browser with
a different fingerprint from where the token was created. This will
make it harder (but not impossible) for a malware attacker to hijack
the session. While no web site does this today, this type of binding
will defeat our basic architecture since the phone fingerprint where
the token is created is different from the terminal fingerprint where
the token is used.

To overcome this potential future difficulty, we describe a more
sophisticated version of SessionJuggler that has the same user ex-
perience and (no) software requirements as above, but defeats all
session hijacking defenses. Our approach is to make the phone use
the terminal to answer all browser fingerprinting queries. As a result,
the generated session token is bound to a browser with the terminal’s
fingerprint and transferring the session does not invalidate the token.

Before delving into SessionJuggler architecture details we men-
tion that our settings are slightly different from traditional session-
hijacking in the wild. In our case, we have full control of the trusted
component (the phone) where the password is entered and we have
little control over the software on the target terminal. Session hi-
jacking in the wild is the reverse — a network attacker has limited
control over the machine where the password is entered, but has
full control over the machine taking control of the session. This
asymmetry may help to ensure that future session hijacking defenses
will not interfere with SessionJuggler.

2. Threat model
We begin by describing our threat model in more detail. Our

goal is to help users login to remote sites from an insecure terminal
without putting their long-term credential at risk.

Our threat model includes five principals:

• A user who has a long-term credential (e.g. a password)
established with a remote web site. The user wishes to interact
with the web site using an untrusted terminal.

• A trusted mobile device (a.k.a phone) that is capable of issu-
ing HTTP requests and parsing HTTP responses to arbitrary
web sites on the Internet. The phone is assumed to run trusted
software that correctly implements the protocol. In our pro-
posal the phone need not hold any secrets so that loss of the
phone has no impact on the user. The phone can optionally
be used as a password manager so that no passwords need to
be manually entered during login.

Ideally the user would use the phone for all web-based inter-
actions, however the small screen on the phone makes this
cumbersome. We assume the user prefers to browse the web
on a device with a larger screen, but is comfortable using the
phone for login.

• A web site that is setup for password-based authentication
followed by session management using a temporary session
token. Our key design goal is that the web site be oblivious to
our system so that our tools can be used with all web sites. We
assume the web site provides a logout function that invalidates
the temporary session token and terminates the session. The
phone may be preconfigured with the logout URL for popular
sites, prompt the user to browse to it or can discover the logout
URL using Mozilla’s upcoming account manager[23].

• An untrusted terminal that will be used to transact with the
web site. The terminal is under the control of the attacker and
any data given to the terminal can be abused by the attacker.
We assume no special hardware or software on the terminal
beyond a modern web browser.

• The attacker has full control of the untrusted terminal as
well as the network link from the untrusted terminal. The
attacker has no control over the user’s phone, the web site, or
the network connecting the two. That is, we model a malware
attacker on the untrusted terminal.

Our security goals are two fold. First, we ensure that the attacker
cannot learn the the user’s long term credential. Second, we provide
a trusted logout to invalidate an ongoing session. We say that the
attacker defeats our system if he can learn the long term credential
or block a request to terminate a session.

Non threats. We do not protect against attacks after login, other
than providing a secure logout mechanism. It should be noted that
since many web sites only use HTTPS for the login page and then
drop back to HTTP, session hijacking is currently easily done by a
network attacker using standard tools [7] without the need for client-
side malware. Often users have no recourse against a session hijack,
even if they are aware that their session was hijacked — clicking
“logout” can be intercepted by a network attacker and blocked (on
sites we tested that fall back to HTTP the logout action was also over
HTTP). In contrast, our secure logout will immediately invalidate
the session once the user detects the attack.

3. A Survey of Session Hijhacking De-
fenses

Since our system transfers session state from the phone to a
terminal we need to understand if and how web sites defend against
the transfer of session tokens. We surveyed the Alexa Top-100 sites,
of which 62 support user sessions (the others have no login option).
Our results are summarized in Table 2 below.

http://elie.im
http://elie.im
http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein Slide deck 2010 http://ly.tl/t1

Ephemeral login vs OTP

• Site specific
password list
proliferation

• Logout issue
how to be sure ?

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein http://elie.im Session Juggler WWW 2012

Sometime bad guys make the best good guys

Elie Bursztein Slide deck 2010 http://ly.tl/t1

Let’s steal a session (demo)

Elie Bursztein http://elie.im Session Juggler WWW 2012

In case the demo failed :)

Log me inDiscard

Do you want to be logged to

www.facebook.com

http://elie.im
http://elie.im
http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein http://elie.im Session Juggler WWW 2012

Flow view

2. Login

5. Resume session

3. {Session data}k

4. {Session data} k

 1. QR code exchange

Phone Blackboard Unsecure terminal Target website

Out of band exchange
HTTP(S) traffic
Encrypted data

http://elie.im
http://elie.im
http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein http://elie.im Session Juggler WWW 2012

Flow view

2. Login

5. Resume session

3. {Session data}k

4. {Session data} k

 1. QR code exchange

Phone Blackboard Unsecure terminal Target website

Out of band exchange
HTTP(S) traffic
Encrypted data

http://elie.im
http://elie.im
http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein http://elie.im Session Juggler WWW 2012

Flow view

2. Login

5. Resume session

3. {Session data}k

4. {Session data} k

 1. QR code exchange

Phone Blackboard Unsecure terminal Target website

Out of band exchange
HTTP(S) traffic
Encrypted data

http://elie.im
http://elie.im
http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein http://elie.im Session Juggler WWW 2012

Flow view

2. Login

5. Resume session

3. {Session data}k

4. {Session data} k

 1. QR code exchange

Phone Blackboard Unsecure terminal Target website

Out of band exchange
HTTP(S) traffic
Encrypted data

http://elie.im
http://elie.im
http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein http://elie.im Session Juggler WWW 2012

Flow view

2. Login

5. Resume session

3. {Session data}k

4. {Session data} k

 1. QR code exchange

Phone Blackboard Unsecure terminal Target website

Out of band exchange
HTTP(S) traffic
Encrypted data

http://elie.im
http://elie.im
http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein http://elie.im Session Juggler WWW 2012

Hijacking defense

Defense % of Alexa100
Login over HTTPS 83%

Using secure cookies 52%
Seperating mobile and desktop sessions 6%

Binding session to IP address 8%
Checking local time 1%

Binding session to user-agent header 0%
Binding session to local language 0%

Logout over HTTPS 1%

Table 2: Anti-hijhacking defenses at the Alexa top 100 sites

Of the 62 sites surveyed, 83% ask the user to login over HTTPS,
but after login all but one fall back to cleartext HTTP (the one excep-
tion being gmail.com). This issue received considerable attention
lately [27, 7] thanks to automated tools that hijack Facebook ses-
sions of close-by users. Many sites (52%) use secure cookies after
login to prevent some data from being sent over HTTP.

Some site (6%) seperate sessions established with the mobile
version of the site from sessions with the non-mobile version. That
is, login from a mobile phone browser does not log the user into the
non-mobile version of the site. For example, Twitter seperates the
mobile and non-mobile version of its site, but Facebook does not.
To work with these sites our system has to hide the fact that user
login took place on the phone.

Several sites try to mitigate the risks of session hijacking by
binding the session token to the user’s browser. To test if a website
was using a specific browser parameter such as user-agent, we
logged into the website and then locally changed the value of the
parameter on our browser. We then browsed the site to see if we
were still logged in. If the session was still active we concluded that
the web site was not binding the session to that parameter. To test if
the session was bound to an IP address we used two networks that
have distinct IP ranges.

The results, shown in Table 2 surprised us. While some sites (in-
cluding Amazon and Apple) bind the session token to the machine’s
IP address, none use more sophisticated browser fingerprints. The
one exception was eBay who used to the local time — changing the
local time invalidated an eBay session.

4. SessionJuggler Architecture
We now present the SessionJuggler architecture and discuss how

it is used. Session Juggler includes three components shown in
figure 2: a web service called "Bulletin Board" that assists in data
exchange between the phone and the terminal, an Android phone
application, and a bookmarklet on the browser in the terminal. Be-
fore discussing how each of this component are implemented, we
provide an overview of how SessionJuggler works.

Login is done using the following steps illustrated in Figures 2
and 3:

1. The user navigates to the website where she wants to login
and clicks on the bookmarklet as in Figure 1 (screenshot 1).

2. The user selects the kind of juggling she wishes to perform: in
visual login the user takes a picture of a displayed QRcode so
the phone can read the information. In pin code login the user
inputs a pin on the bookmark/extension popup (see Figure 1,
screenshot 2).

3. The phone gather the needed information (URL, user agent

string, and some other data) and presents the URL with a
confirmation dialog (Figure 1, screenshot 3).

4. Once the user confirms the action, the phone navigate the
browser to the requested website, here Facebook, and asks
the user to login. At that point the user either types in the
password or uses a password manager on the phone. Note
that our implementation allows the user to store her password
directly in the app but the user is free to use any password
manager/cloud service of her choice as we are compatible
with the Android default WebView class (Figure 1, screen-
shot 4).

5. Once logged in the user selects “transfer session,” which cause
the phone to encrypt and post the session data (URL, cookies)
to the bulletin board (Figure 1, screenshot 5).

6. Shortly after, the bookmarklet retrieves the data from the
bulletin board, decrypts it, installs the cookies for the domain,
and navigates the page to the requested URL. At this point
the user is logged and the session is successfully transferred
(Figure 1, screenshot 6).

The Bulletin Board
The bulletin board is a web service written in PHP that facilitates
exchange of information between the phone and the terminal. This
“middleware” which obey the “Blackboard” design pattern is needed
because often the phone can’t be reached directly by the terminal
as they leave on two different network that are NATed/Firewalled.
Accordingly the bulletin board can be viewed as a convenient way
to write and read encrypted data and therefore do not need to be
trusted. Accordingly the bulletin board can be any web service that
allows to read and write data such as Twitter. It can even be an
HTTP server on the phone if the terminal is able to connect to it.
In our implementation (http://ly.tl/sjbb) each exchange is
identified by a parameter called ID and the bulletin board understand
the two following types of requests:

• PUT request:
<mode="PUT" & id = "ID" & data = "DATA">

Stores "DATA" in a file identified by BB_<ID>.

• GET request:
<mode = "GET" & id = "ID">

Retrieves file name BB_<ID> is one exists. Otherwise, indi-
cates error.

This interface enables simultaneous communication among distinct
entities who share a common unique ID. It also enables multiple
users to use the bulletin board simultaneously.

The bookmarklet
When the user start using a terminal he has to visits a trusted web
site and installs our bookmarklet by drag and dropping it to its
bookmark bar. Using a bookmarklet is standard practice used by
many websites, including Wordpress and Readable, to provide a
quick access to a feature that require executing a javascript. By
clicking on the bookmarklet, the user initiate a session transfer from
the phone to the terminal. The bookmarklet uses the SJCL Javascript
crypto library [30] to encrypt the request. Our bookmarklet can be
downloaded from http://ly.tl/sjbl

As explained earlier, we have implemented two ways, Figures 2
and 3, to exchange a key between the phone and the bookmarklet:

QR mode. In this mode, the bookmarklet generates a 128 bit AES
key K using the SJCL library. It then computes ID = HMACK(0)

http://elie.im
http://elie.im
http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein http://elie.im Session Juggler WWW 2012

Experimental results

• Works on 98% of the Alexa top 100

• Can be extended to work against arbitrary defense

http://elie.im
http://elie.im
http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein http://elie.im Session Juggler WWW 2012

Conclusion

• Steal http session to provide a temporary login

• No server side or client modification

http://elie.im
http://elie.im
http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein http://elie.im Session Juggler WWW 2012

Questions ?

Follow-me !

Thank you !

Google+ / Twitter: @elie

More research: http://elie.im/

Thank you

http://elie.im
http://elie.im
http://ly.tl/t1
http://ly.tl/t1
http://elie.im/captcha
http://elie.im/captcha

Elie Bursztein http://elie.im Session Juggler WWW 2012

Alternative architecture

1) key

5) Login

3) {Request}

Resume session

7) {Session data}
2) {Request}

6) {Session data}

4) Get password

http://elie.im
http://elie.im
http://ly.tl/t1
http://ly.tl/t1

