
State of the Art: Automated Black-Box Web Application Vulnerability Testing

Jason Bau, Elie Bursztein, Divij Gupta, John Mitchell
Stanford University

Stanford, CA
{jbau, divijg}@stanford.edu, {elie, mitchell}@cs.stanford.edu

Abstract—Black-box web application vulnerability scanners
are automated tools that probe web applications for security
vulnerabilities. In order to assess the current state of the art, we
obtained access to eight leading tools and carried out a study
of: (i) the class of vulnerabilities tested by these scanners, (ii)
their effectiveness against target vulnerabilities, and (iii) the
relevance of the target vulnerabilities to vulnerabilities found
in the wild. To conduct our study we used a custom web
application vulnerable to known and projected vulnerabilities,
and previous versions of widely used web applications con-
taining known vulnerabilities. Our results show the promise
and effectiveness of automated tools, as a group, and also
some limitations. In particular, “stored” forms of Cross Site
Scripting (XSS) and SQL Injection (SQLI) vulnerabilities are
not currently found by many tools. Because our goal is to
assess the potential of future research, not to evaluate specific
vendors, we do not report comparative data or make any
recommendations about purchase of specific tools.

Keywords-Web Application Security; Black Box Testing;
Vulnerability Detection; Security Standards Compliance;

I. INTRODUCTION

Black-box web application vulnerability scanners are au-
tomated tools that probe web applications for security vul-
nerabilities, without access to source code used to build the
applications. While there are intrinsic limitations of black-
box tools, in comparison with code walkthrough, automated
source code analysis tools, and procedures carried out by
red teams, automated black-box tools also have advantages.
Black-box scanners mimic external attacks from hackers,
provide cost-effective methods for detecting a range of im-
portant vulnerabilities, and may configure and test defenses
such as web application firewalls. Since the usefulness of
black-box web scanners is directly related to their ability
to detect vulnerabilities of interest to web developers, we
undertook a study to determine the effectiveness of leading
tools. Our goal in this paper is to report test results and
identify the strengths of current tools, their limitations, and
strategic directions for future research on web application
scanning methods. Because this is an anonymized confer-
ence submission, we note that the authors of this study are
university researchers.

Web application security vulnerabilities such as cross-site
scripting, SQL injection, and cross-site request forgeries are
acknowledged problems with thousands of vulnerabilities
reported each year. These vulnerabilities allow attackers to

perform malevolent actions that range from gaining unau-
thorized account access [1] to obtaining sensitive data such
as credit card numbers [2]. In the extreme case, these vulner-
abilities may reveal the identities of intelligence personnel
[3]. Because of these risks, web application vulnerability
remediation has been integrated into the compliance pro-
cess of major commercial and governmental standards, e.g.
the Payment Card Industry Data Security Standard (PCI
DSS), Health Insurance Portability and Accountability Act
(HIPAA), and the Sarbanes-Oxley Act. To meet these man-
dates, web application scanners that detect vulnerabilities,
offer remediation advice, and generate compliance reports.
Over the last few years, the web vulnerability scanner market
as become a very active commercial space, with, for exam-
ple, more than 50 products approved for PCI compliance
[4].

This paper reports a study of current automated black-
box web application vulnerability scanners, with the aim of
providing the background needed to evaluate and identify
the potential value of future research in this area. To the
best of our knowledge this paper is the most comprehensive
research on any group of web scanners to date. Because we
were unable to find competitive open-source tools in this
area (see Section VII), we contacted the vendors of eight
well-known commercial vulnerabilities scanners and tested
their scanners against a common set of sample applications.
The eight scanners are listed in Table I. Our study aims to
answer these three questions:

1) What vulnerabilities are tested by the scanners?
2) How representative are the scanner tests of vulnera-

bility populations in the wild?
3) How effective are the scanners?

Because our goal is to assess the potential impact of
future research, we report aggregate data about all scanners,
and some data indicating the performance of the best-
performing scanner on each of several measures. Because
this is not a commercial study or comparative evaluation of
individual scanners, we do not report comparative detection
data or provide recommendations of specific tools. No single
scanner is consistently top-ranked across all vulnerability
categories.

We now outline our study methodology and summarize
our most significant findings. We began by evaluating the

set of vulnerabilities tested by the scanners. Since most
of the scanners provide visibility into the way that target
vulnerability categories are scanned, including details of
the distribution of their test vector sets by vulnerability
classification, we use this and other measures to compare the
scanner target vulnerability distribution with the distribution
of in-the-wild web application vulnerabilities. We mine the
latter from incidence rate data as recorded by VUPEN
security [5], an aggregator and validator of vulnerabilities
reported by various databases such as the National Vul-
nerability Database (NVD) provided by NIST [6]. Using
database results, we also compare the incidence rates of web
application vulnerability as a group against incidence rates
for system vulnerabilities (e.g. buffer overflows) as group.

In the first phase of our experiments, we evaluate scan-
ner detection performance on established web applications,
using previous versions of Drupal, phpBB, and Wordpress,
released around January 2006, all of which include well-
known vulnerabilities. In the second phase of our experi-
ments, we construct a custom testbed application containing
an extensive set of contemporary vulnerabilities in pro-
portion with the vulnerability population in the wild. Our
testbed checks all of the vulnerabilities in the NIST Web
Application Scanner Functional Specification [18] and tests
37 of the 41 scanner vulnerability detection capabililities in
the Web Application Security Consortium [19] evaluation
guide for web application scanners. (See Section VII).
Our testbed application also measures scanner ability to
understand and crawl links written in various encodings and
content technologies.

We use our custom application to measure elapsed scan-
ning time and scanner-generated network traffic, and most
importantly, we tested the scanners for vulnerability detec-
tion and false positive performance.

Our most significant findings include:
1) The vulnerabilities for which the scanners test most

extensively are, in order, Information Disclosure,
Cross Site Scripting (XSS), SQL Injection, and other
forms of Cross Channel Scripting (XCS). This testing
distribution is roughly consistent with the vulnerability
population in the wild.

2) Although many scanners are effective at following
links whose targets are textually present in served
pages, most are not effective at following links through
active content technologies such as Java applets, Sil-
verLight, and Flash.

3) The scanners as a group are effective at detecting
well-known vulnerabilities. They performed capably
at detecting vulnerabilities already reported to VuPen
from historical application versions. Also, the scanners
detected basic “reflected” cross-site scripting well,
with an average detection rate of over 60%.

4) The scanner performed particularly poorly at detect-
ing “stored” vulnerabilities. For example, no scanner

Table I
STUDIED VULNERABILITY SCANNERS

Company Product Version Scanning Profiles Used

Acunetix WVS 6.5 Default and Stored XSS
Cenzic HailStorm Pro 6.0 Best Practices, PCI

Infrastructure, and Session
HP WebInspect 8.0 All Checks
IBM Rational AppScan 7.9 Complete
McAfee McAfee SECURE Web Hack Simulation and DoS
N-Stalker QA Edition 7.0.0 Everything
Qualys QualysGuard PCI Web N/A
Rapid7 NeXpose 4.8.0 PCI

detected any of our constructed second-order SQLI
vulnerabilities, and the stored XSS detection rate was
only 15%. Other limitations are discussed further in
this paper.

Our analysis suggests room for improvement in detecting
vulnerabilities inserted in our testbed, and we propose po-
tential areas of research in Section VIII. However, we have
made no attempt to measure the financial value of these tools
to potential users. Scanners performing as shown may have
significant value to customers, when used systematically as
part of an overall security program. In addition, we did not
quantify the relative importance of detecting specific vulner-
abilities. In principle, a scanner with a lower detection rate
may be more useful if the smaller number of vulnerabilities
it detects are individually more important to customers.

Section II of this paper discusses the black box scanners
and their vulnerability test vectors. Section III establishes
the population of reported web vulnerabilities. Section IV
presents scanner results on Wordress, phpBB, and Drupal
versions released around January 2006. Section V discusses
testbed results by vulnerability category for the aggregated
scanner set and also false positives. Section VI contains
some remarks by scanner, on individual scanner performance
as well as user experience. Section VII discusses related
work and section VIII concludes by highlighting research
opportunities resultant from this work.

II. BLACK BOX SCANNERS

We begin by describing the general usage scenario and
software architecture of the black-box web vulnerability
scanners. We then discuss the vulnerability categories which
they aim to detect, including test vector statistics where
available. Table I lists the eight scanners incorporated in
our study, which include products from several of the
most-established security companies in the industry. All the
scanners in the study are approved for PCI Compliance
testing [4]. The prices of the scanners in our study range
from hundreds to tens-of-thousands of dollars. Given such
a wide price range and also variations in usability, potential
customers of the scanners would likely not make a purchase
decision on detection performance alone.

XSS

SQLI

XCS

Session

CSRF

Configuration

Info leaks

0 10 20 30 40 50

Test vectors

Figure 1. Scanner Test Vector Percentage Distribution

A. Usage Scenario

To begin a scanning session using a typical scanner, the
user must enter the entry URL of the web application as
well as provide a single set of user login credentials for
this application. The user then must specify options for the
scanner’s page crawler, in order to maximize page scanning
coverage. Most scanners tested allow a “crawl-only” mode,
so that the user can verify that the provided login and the
crawler options are working as expected. After setting the
crawler, the user then specifies the the scanning profile, or
test vector set, to be used in the vulnerability detection
run, before launching the scan. All scanners can proceed
automatically with the scan after profile selection, and most
include interactive modes where the user may direct the
scanner to scan each page. In our testbed experiments,
we always set the scanner to run, in automated mode,
the most comprehensive set of tests available, to maximize
vulnerability detection capability.

B. Software Architecture Descriptions

We ran two of the tested scanners, McAfee and Qualys, as
remote services whereby the user configures the scanner via
a web-interface before launching the scan from a vendor-
run server farm. The other six scanners were tested as
software packages running on a local computer, although
the NeXpose scanner runs as a network service accessed by
browser via an IP port (thus naturally supporting multiple
scanner instances run by one interface). All scanners, as
would be expected of black box web-application testers,
generate http requests as test vectors and analyze the http
response sent by the web server for vulnerabilities. All local
scanner engines seem to run in a single process, except for
the Cenzic scanner, which runs a separate browser process
that appears to actually render the http response in order to
find potential vulnerabilities therein.

Table II
CONSENSUS VULNERABILITY CLASSIFICATION ACROSS SCANNERS

Classification Example Vulnerability

Cross-Site Scripting (XSS) Cross-Site Scripting
SQL Injection (SQLI) SQL Injection

Cross Channel Scripting

Arbitrary File Upload
Remote File Inclusion
OS Command Injection
Code Injection

Session Management
Session Fixation
Session Prediction
Authentication Bypass

Cross-Site Request Forgery Cross Site Request Forgery

SSL/Server Configuration SSL Misconfiguration
Insecure HTTP Methods

Information Leakage

Insecure Temp File
Path Traversal
Source Code Disclosure
Error Message Disclosure

C. Vulnerability Categories Targeted by Scanners

As each scanner in our study is qualified for PCI com-
pliance, they are mandated to test for each of the Open
Web Application Security Project (OWASP) Top Ten 2007
[7] vulnerability categories. We also examine the scanning
profile customization features of each scanner for further
insight into their target vulnerability categories. All scanners
except Rapid7 and Qualys allow views of the scanning
profile by target vulnerability category, which are often
direct from the OWASP Top Ten 2007 and 2010rc1, Web
Application Security Consortium (WASC) Threat Classifica-
tion version 1 [8], or the Common Weakness Enumeration
(CWE) top 25 [9]. In fact, each of the six allow very fine-
grained test customization, resulting in a set of over 100
different targeted vulnerability categories, too numerous to
list here. However, when related vulnerability categories
were combined into more general classifications, we were
able to find a set of consensus classifications for which all
tools test. Table II presents this list of consensus classifi-
cations, along with some example vulnerabilities from each
classification. We have kept Cross-Site Scripting and SQL
Injection as their own vulnerability classifications due to
their preponderant rate of occurrence (supported by “in the
wild” data in the next section) and their targeting by all
scanners. The Cross Channel Scripting classification [10]
includes all vulnerabilities, including those listed in the
table, allowing the user to inject code “across a channel”
onto the web server that executes on the server or a client
browser, aside from XSS and SQLI.

D. Test Vector Statistics

We were able to obtain detailed enough test profile infor-
mation for four scanners (McAfee, IBM, HP, and Acunetix)
to evaluate how many test vectors target each vulnerabilities
classification, a rough measure of how much “attention”

scanner vendors devote to each classification. Figure 1 plots
the percentage of vectors targeting each classification aggre-
gated over the four scanners. The results show that scanners
devote most testing to information leakage vulnerabilities,
followed by XSS and SQLI vulnerabilities.

III. VULNERABILITY POPULATION FROM
VUPEN-VERIFIED NVD

In order to evaluate how well the vulnerability categories
tested by the scanners represent the web application vulner-
ability population “in the wild”, we took all of the web vul-
nerability categories forming the consensus classifications
from Table II and performed queries against the VUPEN
Security Vulnerability Notification Service database for the
years 2005 through 2009. We chose this particular database
as our reference as it aggregates vulnerabilities, verifies them
through the generation of successful attack vectors, and
reports them to sources such as the Common Vulnerabilities
and Exposures (CVE) [11] feed of the National Vulnerability
Database.

We collected from the VUPEN database the relative
incidence rate trends of the web application vulnerability
classes, which are plotted in Figure 2. Figure 3 plots
incidences of web application vulnerabilities against in-
cidences of system vulnerabilities, e.g. Buffer Overflow,
Integer Overflow, Format String, Memory Corruption, and
Race Conditions, again collected by us using data from
VUPEN.

Figure 2 demonstrates that Cross-Site Scripting, SQL
Injection, and other forms of Cross-Channel Scripting have
consistently counted as three of the top four reported web
application vulnerability classes, with Information Leak be-
ing the other top vulnerability. These are also the top four
vulnerability classes by scanner test vector count. Within
these four, scanner test vectors for Information Leak amount
to twice that of any other vulnerability class, but the Infor-
mation Leak incidence rates in the wild are generally lower
than that of XSS, SQLI, and XCS. We speculate that perhaps
test vectors for detecting information leakage, which may
be as simple as checking for accessible common default
pathnames, are easier to create than other test types. Overall,
however, it does appear that the testing emphasis for black-
box scanners as a group is reasonably proportional to the
verified vulnerability population in the wild.

We believe that the increase in SSL vulnerabilities shown
in figure 2 does not indicate a need for increased black-
box scanning. A large number of SSL vulnerabilities were
reported in 2009, causing the upward trend in SSL in-
cidences. However, these are actually certificate spoofing
vulnerabilities that allow a certificate issued for one domain
name, usually containing a null-character, to become valid
for another domain name [12], [13]. As this vulnerability is
caused by mistakes made by the certificate authority and the
client application (usually browser), it cannot be prevented

Table III
PREVIOUSLY-REPORTED VS SCANNER-FOUND VULNERABILITIES FOR

DRUPAL, PHPBB2, AND WORDPRESS

Category
Drupal phpBB2 Wordpress
4.7.0 2.0.19 1.5strayhorn

Known Found Known Found Known Found
XSS 6 2 5 2 13 7
SQLI 2 1 1 1 8 4
XCS 4 0 1 0 8 3
Session 5 4 4 4 6 5
CSRF 2 0 1 0 1 1
Info Leak 4 3 1 1 6 4

by the website operator and thus cannot be detected by web
application scanning. In effect, the number of SSL/Server
configuration vulnerabilities that web application scanners
may reasonably aim to detect does not appear to increase
with the increased SSL vulnerability incidence rate.

Finally, Figures 2 and 3 suggest that 2006 was a particu-
larly high-incident year for web application vulnerabilities,
with incidents actually decreasing in subsequent years. (This
trend is also confirmed by searches in the CVE database.)
While it is impossible to be certain, evidence gathered during
the course of this study, including the effectiveness of the
scanners at detecting basic XSS and SQLI vulnerabilities,
suggests that the decrease may possibly be attributable to
headway made by the security community against these
vulnerabilities. Improved security, however, has been an-
swered in turn by efforts to uncover more novel forms of
the vulnerabilities.

IV. SCANNER RESULTS ON COMMON WEB
APPLICATIONS

Having confirmed that the testing vector distribution of
black-box web vulnerability scanners as a group roughly
correlates with the vulnerability population trends in the
wild, we now examine whether the scanners are actually
successful at finding existent vulnerabilities. We ran all scan-
ners on three popular web applications, Drupal, phpBB2, and
Wordpress, all with known vulnerabilities. We chose to scan
application versions released around January 2006, as this
was prior to the peak in vulnerability reports in 2006. While
these are field applications with some inherent uncertainty as
to their exact vulnerability content, the early release dates
mean these application versions are the most field-tested,
with most vulnerabilities likely to have been recorded by
VUPEN via the NVD.

Table III lists the specific application versions tested as
well as the number of known vulnerabilities, including those
reported by the VUPEN database for each of these versions.
For all applications, we installed only the default modules
and included no add-ons.

Table III also shows the number of vulnerabilities found
by any scanners in the group, out of the set of known

N
um

be
r o

f v
ul

ne
ra

bi
lit

y

0

100

200

300

400

500

600

700

800

900

1000

2005 2006 2007 2008 2009

Evolution of the web vulnerabilities over the years by types

XSS
SQLi
XCS
Session
CSRF
SSL
Infomation Leak

Figure 2. Comparison of Web Application Vulnerability Classes in VUPEN Database

1186

2793

1528

996

1275

1095

2000 1951

1531

1647

N
um

be
r o

f v
ul

ne
ra

bi
lit

ie
s

1000

2000

3000

2005 2006 2007 2008 2009

Evolution of the number of vulnerabilties by years

Web
System

Figure 3. Web Application Vulnerabilities versus System Vulnerabilities in VUPEN Database

vulnerabilities. As the table shows, the scanner in total did
a generally good job of detecting these previously known
vulnerabilities. They did particularly well in the Information
Disclosure and Session Management classifications, leading
to the hypothesis that effective test vectors are easier to add
for these categories than others. The scanners also did a
reasonable job of detecting XSS and SQLI vulnerabilities,
with about 50% detection rate for both. The low detection
rate in the CSRF classification may possibly be explained
by the small number of CSRF test vectors. Anecdotally,
one scanner vendor confirmed that they do not report CSRF
vulnerabilities due to the difficulty of determining which
forms in the application require protection from CSRF.

V. SCANNER RESULTS ON CUSTOM TESTBED

In addition to testing scanner detection performance on
established web applications, we also evaluated the scanners
in a controlled environment. We developed our own custom
testbed application containing hand-inserted vulnerabilities,
each of which have a proven attack pattern. We verified each
of the vulnerabilities present in this environment, allowing us

significantly smaller uncertainty in vulnerability content than
in the case of field-deployed applications. (The scanners as a
group did not uncover any unintended vulnerabilities in our
web application.) We plan to release this testbed publically.

For each vulnerability classification, we incorporated both
“textbook” instances and also forward-looking instances,
such as XSS with non-standard tags, for each vulnerability
classification. However, we kept the vulnerability content
of our testbed fairly proportional with the vulnerability
population in the wild.

Our testbed has around 50 unique URLs and around
3000 lines of code, installed on a Linux 2.6.18-128.1.6.el5
server running Apache 2.2.3, MySQL 5.0.45, and PHP 5.1.6.
PhpMyAdmin was also running on our server alongside
the testbed application, solely for administrative purposes;
we thus ignored any scanner results having to do with
phpMyAdmin.

The remainder of this section is devoted to scanner testbed
data. We begin by presenting the performance footprint of
each scanner on our testbed. Following this, we report page
coverage results, designed to test scanner understanding of

241

109

87

66

138

168

473

118

Acunetix

Cenzic

HP

IBM

McAfee

N-Stalker

Qualys

Rapid7

0m 50m 100m150m200m250m300m350m400m450m500m

Execution time

(a) Scanner Execution Time in Minutes

123

76

35

71

25

122

48

186

146

116

206

125

53

877

145

649

Acunetix

Cenzic

HP

IBM

McAfee

N-Stalker

Qualys

Rapid7

 0 MB 100 MB 200 MB 300 MB 400 MB 500 MB 600 MB 700 MB 800 MB 900 MB

Traffic generated

Data sent
Data received

(b) Scanner Bytes Sent and Received

Figure 4. Scanner Footprint

various content technologies. We then present vulnerability
detection results, first an overview and subsequently by
vulnerability classification, giving a brief overview of our
testbed design for each classification. Finally, we discuss
false positives, including experimentally designed “traps” for
false positives as well as scanner results.

A. Scanner Time and Network Footprint

Figures 4a and 4b respectively plot the time required to
scan the testbed application and the number of network bytes
sent/received by each scanner, as measured on the web server
by tcpdump. Scanning time ranged from 66 to 473 minutes,
while network traffic ranged from 80 MB to nearly 1 GB.

Perhaps surprisingly, the scanning time and network traf-
fic statistics seem to be relatively independent of each
other, as exemplified by the Rapid7, Qualys, N-Stalker,
and McAfee results. It is interesting that the two remote
services, Qualys and McAfee, generated comparatively low
amounts of network traffic. Finally, we wish to note that
the footprint statistics are not indicative of vulnerability
detection performance.

B. Coverage Results

To experimentally evaluate site coverage, we wrote hy-
perlinks using the technology in each category shown in
figure 5 and embedded each landing page with tracker code
that measured whether the link was followed. For Java,
SilverLight, and Flash, the linked applet or movie is a
simple, bare shell containing only the hyperlink. We then
link to the technology page containing the link from the
application home page, which is written in regular php.

The link encoding category encompasses links written
in hexadecimal, decimal, octal, and html encodings, with
the landing page file named in regular ASCII. The “POST
link” test involves a link that only shows up when certain
selections are made on a POST form. The other technologies

are self explanatory. Figure 5 shows the experimental results,
where the measure is percentage of successful links crawled
over total existent links by technology category.

Figure 5 shows that the scanners as a group have fairly
low comprehension of active technologies such as Java
applets, SilverLight, and, surprisingly given its widespread
use, Flash. We speculate that some scanners only perform
textual analysis of http responses in order to collect URLs,
thus allowing them to perform decently on script-based
links, which are represented in text, but not allowing them
to follow links embedded in compiled objects such as Java
applets and Flash movies. This would also explain the better
coverage of SilverLight over Flash and Java, as SilverLight
is delivered in a text-based markup language. We also
see that the scanners could improve their understanding of
various link encodings.

C. Vulnerability Detection Results

1) Overall Results: Figure 6 presents by vulnerability
classification the vulnerability detection rate averaged over
all scanners. The detection rate is simply calculated as the
number of vulnerabilities found over the (known) number of
total vulnerabilities. Results for each vulnerability classifi-
cations, including an added malware detection classification,
are explained in detail in individual sub-sections to follow.
Each vulnerability classification sub-section describes the
testbed for the category, plots the average detection rate over
all scanners, and also plots anonymous individual scanner
results for the category sorted from best- to worst-performing
for that category.

The results show that the scanners as a group are fairly
effective at detecting basic “reflected” cross-site scripting
(XSS type 1), with a detection rate of over 60%. Also,
although not shown, basic forms of first-order SQL Injection
were detected by a majority of scanners. Unfortunately,
the overall results for the first-order SQL vulnerability

79.16

50

37.5

12.5 12.5

100 100

53.12 50

100

87.5

62.5

75
%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

Javascript events

AJAX
Silver Light

Flash
Java Applets

PHP redirects

Meta-refresh tag

Link encoding

Dynamic javascript

Pop-up
Iframe

VBScript

POST link

Scanner coverage efficiency by type of link

Figure 5. Successful Link Traversals over Total Links by Technology Category, Averaged Over All Scanners.

62.5
15

11.25
20.4

15
21.4

0
26.5

32.5
31.2

0

XSS type 1
XSS type 2

XSS advance
XCS

CSRF
SQL 1st order

SQL 2nd order
Session

Config
Info leak
Malware

0% 10% 20% 30% 40% 50% 60%

Scanners Overall detection rate

Figure 6. Average Scanner Vulnerability Detection Rate By Category

classification were dragged down by poor scanner detection
of more complex forms of first-order SQL injection that use
different keywords. Aside from the XSS type 1 classification,
there were no other vulnerability classifications where the
scanners as a group detected more than 32.5% of the
vulnerabilities. In some cases, scanners were unable to detect
testbed vulnerabilities which were an exact match for a cate-
gory listed in the scanning profile. We also note how poorly
the scanners performed at detecting “stored” vulnerabilities,
i.e. XSS type 2 and second-order SQL injection, and how
no scanner was able to detect the presence of malware. We
will discuss our thoughts on how to improve detection of
these under-performing categories in Section VIII.

2) Cross-Site Scripting: Due to the preponderance of
Cross-Site Scripting vulnerabilities in the wild, we divided
Cross-Site Scripting into three sub-classes: XSS type 1, XSS
type 2, and XSS advanced. XSS type 1 consists of textbook
examples of reflected XSS, performed via the <script>
tag. XSS type 2 consists of stored XSS vulnerabilities,
where un-sanitized user input is written to the database and
later performs scripting when read from the database. XSS
advanced encompasses novel forms of reflected and stored

XSS, using non-standard tags and keywords, such <style>
and prompt() [14], or using alternative scripting tech-
nologies such as Flash. For XSS advanced tests using novel
keywords, we filtered out any user inputs that did not contain
the appropriate keywords.

As previously mentioned, Figure 7 shows that the scanners
performed decently well on XSS type 1, with all scanners
detecting at least 50% of the vulnerabilities. For the other
categories, however, the scanners performed poorly as a
group, with only the leading performer detecting more than
20% of vulnerabilities, and numerous scanners failing to
detect any vulnerabilities.

3) SQL Injection: We also divided SQL Injection vulner-
abilities into two sub-classes, first-order and second-order,
for the same reason as dividing the XSS classification. First-
order SQL Injection vulnerabilities results in immediate
SQL command execution upon user input submission, while
second-order SQL Injection requires unsanitized user input
to be loaded from the database. The first-order SQL vul-
nerability classification also includes both textbook vulnera-
bilities as well as vulnerabilities dependent on non-standard
keywords such as LIKE and UNION, where user inputs not

50

0

0

50

0

0

50

0

0

50

20

0

50

20

0

50

20

20

100

20

20

100

40

50

62.5

15

11.25

XSS type 1

XSS type 2

XSS adv

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Scanner Detection Rate for X
8th
7th
6th
5th
4th
3rd
2nd
1st
Average

Figure 7. XSS Detection Results Sorted By Scanner Rank in Category

0

0

14.2

0

14.2

0

14.2

0

28.5

0

28.5

0

28.5

0

42.8

0

21.4

0

SQL 1st

SQL 2nd

0% 10% 20% 30% 40%

Scanner Detection Rate for SQL injections
8th
7th
6th
5th
4th
3rd
2nd
1st
Average

Figure 8. SQL Injection Detection Results Sorted by Scanner Rank in Category

containing the appropriate keyword are again filtered out.
Also, in all cases, malformed SQL queries in our testbed
result in a displayed SQL error message, so scanners do not
have to rely on blind SQL Injection detection.

Figure 8 shows that 7 of 8 scanners were able to detect
the basic first-order SQL injection vulnerability (accounting
for the 14.2%), but only one scanner was able to exceed
40% rate of detection for all first-order SQL injection
vulnerabilities. Similar to XSS results, second-order SQLI
vulnerability detection is significantly worse than first-order,
with no scanner able to detect even one such vulnerability.

4) Cross-Channel Scripting: As described in a previous
section, the Cross Channel Scripting classification includes
all vulnerabilities allowing the attacker to inject code onto
the web server that manipulates the server or a client
browser. In our testbed, this classification included vulner-
abilities in XPath injection, Malicious File Upload, Open

Redirects, Cross-Frame Scripting, Server Side Includes,
Path Traversal, Header Injection (HTTP Response Splitting),
Flash Parameter Injection, and SMTP Injection.

As Figure 9 demonstrates, the scanners as a group per-
formed fairly poorly on this class of vulnerabilities. Only
Server-Side Includes and Path Traversal were detected by a
majority of scanners.

5) Session Management: The Session vulnerability clas-
sification include session management flaws as well as
authentication and cookie flaws. The testbed authentica-
tion vulnerabilities include credentials being sent over un-
encrypted HTTP, auto-complete enabled in the password
field, submitting sensitive information over GET requests,
weak password and password recovery questions, and weak
registration CAPTCHAs. The session management and
cookie vulnerabilities include insecure session cookies, non-
HttpOnly cookies, too broad cookie path restrictions, pre-

0

0

9.09

18.18

18.18

27.27

36.36

54.54

20.4

XCS

0% 10% 20% 30% 40% 50%

Scanner Detection Rate for XCS vulnerabilities

8th
7th
6th
5th
4th
3rd
2nd
1st
Average

Figure 9. Cross-Channel Scripting Detection Results Sorted by Scanner Rank in Category

12.5

18.7

18.7

25

25

31.25

37.5

43.75

26.5

Session

0% 10% 20% 30% 40%

Scanner Detection Rate for session vulnerabilities

8th
7th
6th
5th
4th
3rd
2nd
1st
Average

Figure 10. Session Management Vulnerability Detection Results Sorted by Scanner Rank in Category

dictable session and authentication id values, session fixa-
tion, ineffective logout, mixed content pages, and caching
of sensitive content.

As a group, the scanners performed better at detecting this
vulnerability class than the SQLI, XSS, and XCS classes.
Figure 10 shows that scanner performance is fairly evenly
distributed between the best performer at 43.7% detection
and the worst at 12.5% detection.

6) Cross-Site Request Forgery: Nearly all forms on our
testbed application do not use any sort of randomized
authentication token, making them vulnerable to Cross-Site
Request Forgery. However, we only considered as requiring
CSRF protection the forms which are only available after
login. Our testbed contains post-login forms without any
authorization token and also post-login form which utilize
tokens with very few bits of entropy. In addition to the CSRF
vulnerabilities just mentioned, our testbed also included
session tokens that do not reset after form submission, GET-
method forms vulnerable to CSRF, and CSRF-like JSON
hijacking vulnerabilities.

Results in Figure 11 show that two scanners fared rela-
tively well at CSRF detection, each achieving 40% detection
rates. On the other extreme, four scanners detected none

of the vulnerabilities in this classification, with one vendor
confirming that they did not report CSRF vulnerabilities at
the time of testing.

7) Information Disclosure: Our testbed application leaks
sensitive information regarding SQL database names via the
die() function and existent user names via AJAX requests.
Backup source code files are also left accessible, and path
disclosure vulnerabilities are also present.

Figure 12 shows that this was one of two vulnerability
categories where the scanners as a group performed the
best. A majority of scanners detected all of the backup file
disclosures, as well as the path disclosure vulnerabilities.

8) Server and Cryptographic Configuration: While
server and cryptography vulnerabilities do not technically
occur at the application layer, they affect web application
security all the same and should be detected by the vulnera-
bility scanners. Our server configuration contained improper
PHP setting in the ‘open basedir’ and ‘allow url fopen’
variables and allowed the HTTP TRACE request. The SSL
of the server was also mis-configured, with a self-signed
SSL certificate and weak cipher strength.

Figure 13 shows that this was the other of the two
vulnerability categories where the scanners as a group

0

0

0

0

20

20

40

40

15

CSRF

0% 10% 20% 30% 40%

Scanner Detection Rate for CSRF vulnerabilities

8th
7th
6th
5th
4th
3rd
2nd
1st
Average

Figure 11. Cross-Site Request Forgery Detection Results Sorted by Scanner Rank in Category

25

25

25

25

25

50

50

50

31.2

Info leak

0% 10% 20% 30% 40% 50%

Scanner Detection Rate for information leaks

8th
7th
6th
5th
4th
3rd
2nd
1st
Average

Figure 12. Information Disclosure Detection Results Sorted by Scanner Rank in Category

performed the best. Seven of eight scanners detected the
TRACE request vulnerability. On the other hand, we were
surprised that less than half of the scanners detected the self-
signed SSL certificate, as this seems to be a simple check
to prevent significant impact on the user-experience of the
site, especially with newer browsers.

9) Detection of Malware: Finally, we decided to add the
detection of malware as a category in the scanner testbed.
With the proliferation of open-source code, it is uncertain
whether website operators are familiar with the entirety of
the codebase which operates their site. Malware detection
serves as a check that websites are not unwitting partners
aiding malicious third-parties in exploiting their users. This
feature is also useful as a defense-in-depth measure in the
case that attackers have succeeded in injecting malicious
code onto the site. Thus, we inserted simple pieces of
malware on our testbed site, a javascript keystroke logger
at the login page and a malicious file in the user-content

section. However, as Figure 6 demonstrates, no scanner
reported the presence of any malware on our testbed site.

D. False Positive Results

We designed two potential “traps” for false positives in
our testbed. The first involves using javascript alert()
as intended site behavior, to see if any scanner would
wrongly classify this as a sign of a Cross-Site Scripting
vulnerability. The second involves inserting user input into
the right-hand side of a Javascript string variable assignment
within a <script> block but not doing anything else with
that variable. Any quotation symbols in the user input that
would create a genuine XSS vulnerability are html-encoded
by the testbed, and all ‘;’ characters are filtered. This in
effect creates a benign region within a <script> block
that reflects user input, which can trap scanners simply
searching for user-manipulable text within script blocks.
The “alert()” trap did not cause any false positives, but

0

20

20

20

20

60

60

60

32.5

Config

0% 10% 20% 30% 40% 50% 60%

Scanner Detection Rate for server configuration errors

8th
7th
6th
5th
4th
3rd
2nd
1st
Average

Figure 13. Server and Cryptographic Configuration Vulnerability Detection Results Sorted by Scanner Rank in Category

the benign region within a <script> block caused false
positives in two scanners–one reporting the false positive in
a single URL and the other in 13 different URLs.

Figure 14 plots the number of false positives reported by
each scanner in sorted order for this category. For reference,
there are around 90 total confirmed vulnerabilities in our
testbed. It is noteworthy that several scanners reported no
false positives, and that some of the scanners with low
false-positives also had among the highest vulnerability
detection rates. The two scanners with the highest number of
false positive, both with vulnerability detection rates among
the lowest, reported numerous accessible code backup files
where none existed. The worst performing scanner for false
positives also reported false file inclusion, SQL Injection,
IP disclosure, path disclosure, and forms accepting POST
parameters form GET requests. This scanner also clas-
sifies hidden form values as vulnerabilities, contradicting
established practices for CSRF prevention using hidden
form authentication tokens. Among all other scanners, the
only other false positives of note are a CSRF vulnerability
reported despite the presence of an authentication token, and
auto-complete being reported for a password field where it
was actually turned-off.

Finally, some scanners emit general warnings when they
detect a potential vulnerability, such as a GET form method
or a form without hidden authentication fields, without actu-
ally pinpointing the URL of the offending forms. We counted
these as detections in our data-collection methodology, but,
given the general nature of these warnings, could have just
as easily listed them as false positives.

51

19

14

2

2

0

0

0

Sc
an

ne
r

1
2
3
4
5
6
7
8

0 10 20 30 40 50

False positive by scanners

Figure 14. False Positive Count in Sorted Order By Scanner

VI. EXPERIMENTAL AND SCANNER USAGE
OBSERVATIONS

We have thus far focused primarily on the detection per-
formance of the scanners as a group of different vulnerability
classifications. In this section, we will remark on some by-
scanner characteristics, without making overall comparative
rankings of one product versus another.

We observed that no individual scanner was a top-
performer in every vulnerability classification. Often, scan-
ners with a leading detection rate in one vulnerability
category lagged in other categories. For example, the leading
scanner in both the XSS and SQL Injection categories was
among the bottom three in detecting Session Management
vulnerabilities, while the leader for Session Vulnerabilities
lagged in XSS and SQLI. This leads us to believe that
scanner vendors may benefit as a community from a cross-
vendor-pollination of ideas.

Reiterating briefly from the false positive results, we did
find that scanners with high detection rates were able to
effectively control false positives, and that scanners with
low detection rates could produce many false positives.

Additionally, there were reticent scanners that reported few
total vulnerabilities, making both detection rate and false
positive count low.

The remote versus local distinction in scanner architecture
makes for interesting choices for the scanner customer. In
our experimental experience, remote scanners were conve-
nient as they experienced no install and system compatibility
issues, offered portable user-interface and report-storage, ran
with complete automation after the initial test configuration,
and did not consume internal network and system resources.
On the other hand, commercial enterprises may be concerned
with privacy and information disclosure issues resulting from
conducting scans over a public network. In response to
customer preferences, some vendors, such as Cenzic and
Rapid7, offer scanners both as a remote service and a local
software package. In our experiments, we observed that the
architecture (local versus remote) of the scanners did not
appear to be a factor in overall detection results.

We also wish to remark on the user experience of the
scanners, specifically regarding test automation. Most tools
offer a choice between interactive and automated scanning
modes, and we anticipate that, given the expected run-time
of the scanners, many users will select the automated mode.
On a particular tool, however, even the automated mode
requires user-interaction to dismiss javascript alert()
boxes, ironically inserted by the tool’s XSS test vectors. This
caused workflow disruption in our laboratory environment,
so we expect that it would carry over when scanning larger,
deployed applications.

Finally, we wish to note that while the vulnerability
detection rates reported in this paper are generally less
than 50%, this fact by itself should not be considered an
indictment against the usefulness of automated black-box
scanners. Black-box scanners may in fact prove to be very
useful components in security-auditing programs upon more
detailed consideration of factors such as cost and time saved
from manual review.

VII. RELATED WORK

Much regulatory and industry effort has been devoted
to vulnerability categorization. The Common Vulnerabilities
and Exposures database [11] (CVE) feed of the NVD,
sponsored by the US Dept. of Homeland Security, associates
each vulnerability in its database with a Common Weakness
Enumeration (CWE) category [9], which include but are not
limited to web application categories. Industry web applica-
tion security special interest groups OWASP [15] and WASC
[16] have published web vulnerability-specific classifications
in their Top Ten [7] and [8] projects respectively. WASC
has also published a report on web-vulnerability statistics
[17], with vulnerability and detection rate data sourced from
automated black-box scanner, manual black-box penetration
testing, and white-box security auditing vendors. The vul-
nerability statistics they report are supportive of our results,

but their self-reported detection rates are in general higher
than our rates, since manual white-box security audits, which
have higher reported detection rates, are also included in the
study.

In addition, NIST [18] and WASC [19] have published
evaluation criteria for web application scanners. We con-
sulted these public categorizations and scanner evaluation
guides to ensure the comprehensiveness of our testbed. Our
testbed checks all of the recommendations in the NIST guide
and 37 of the 41 first-and-second-level testing capability
listed by WASC.

Almost all academic research on tools for web applica-
tion security has been source code analysis, with a focus
on detecting XSS and SQLI via information flow, model-
ing checking analysis, or a combination thereof. Work by
Wassermann [20], Lam [21], Kieżun [22], Jovanovic [23],
and Huang [24] all fall into this category.

Kals et. al. [25] and McAllister et. al. [26] implemented
automated black box web vulnerability scanners, with the
former targeting SQLI and XSS vulnerabilities and the latter
utilizing user interactions to generate more effective test
cases targeting reflected and stored XSS. Maggi et. al. [27]
discuss techniques to reduce false positive counts in auto-
mated intrusion detection, which is applicable to black-box
scanning. Interesting open-source scanner projects include
W3AF [28] and Powerfuzzer [29], which we evaluated but
did not include in the study due to their lack of testing
for authentication and server vulnerabilities, and Nikto [30],
which in counterpoint to W3AF and PowerFuzzer focuses
on server vulnerabilities instead of user-input validation.

In terms of testbeds for black-box web application vul-
nerability scanners, there are a number of “vulnerability
demonstration sites”, such as WebGoat by OWASP [31],
Hacme Bank [32], and AltoroMutual [33], that offer vul-
nerability education for website developers as well as sales-
demonstration for scanner product capabilities. Due to their
well-known status and/or intended purpose, we did not
evaluate any of the scanners on these sites as we did not
view the site as independent testbeds. However, Suto [?]
has produced an interesting comparison of seven black-box
scanners by running the products against several of these
demonstration sites. Finally, Fonseca et. al. [34] evaluated
the XSS and SQLI detection performance of three anony-
mous commerical application via automated software fault-
injection methods.

VIII. CONCLUSION

We studied the vulnerabilities that current black-box scan-
ners aim to detect and their effectiveness in detecting these
vulnerabilities. Our survey of web-application vulnerabilities
in the wild shows that Cross-Site Scripting, SQL Injection,
other forms of Cross-Channel Scripting, and Information
Disclosure are the most prevalent classes of vulnerabilities.

Further, we found that black-box web application vulnera-
bility scanners do, in general, expend testing effort in rough
proportion to the vulnerability population in the wild. As
shown by our experimental results on previous versions
of popular applications and textbook cases of Cross-Site
Scripting and SQL Injection, black-box scanners are adept
at detecting straightforward historical vulnerabilities.

On the other hand, black-box scanner detection rates show
room for improvement in other classes of vulnerabilities,
such as advanced and second-order forms of XSS and
SQLI, other forms of Cross-Channel Scripting, Cross-Site
Request Forgery, and Malware Presence. Deficiencies in the
CSRF and Malware classifications, and possibly in XCS,
may simply be attributable to lack-of-emphasis in vendor
test suites. Low detection rates in advanced and second-
order XSS and SQLI may indicate more systematic flaws,
such as insufficient storage modeling in XSS and SQLI
detection. Indeed, multiple vendors confirmed their difficulty
in designing tests which detect second-order vulnerabili-
ties. Although our data suggests room for improvement in
detecting vulnerabilities, the scanners we tested may have
significant value to customers, when used systematically as
part of an overall security program.

The strongest research opportunities lie in detecting ad-
vanced and second-order forms of XSS and SQLI, because
these forms of vulnerabilities are prevalent (and will con-
tinue to be) and tools do not currently perform well, despite
significant effort. There are several ways that scanner perfor-
mance might be improved in the “advanced” vulnerability
categories, which consist of attacks using novel and non-
standard keywords. A reactive approach is to develop more
nimble processes of converting newly discovered vulnera-
bilities into appropriate test vectors. A more foundational
approach could involve modeling application semantics in a
meaningful way.

For 2nd order XSS and SQLI vulnerabilities, one natural
research problem is to increase observability. The scanners
have difficulty confirming that a script or code injection into
storage was successful and also may have trouble linking
a later observation with the earlier injection event. We
can anecdotally confirm the latter statement, as one of the
tools succeeded in injecting a stored Javascript alert()
but later failed to identify this as a stored XSS. Thus,
we believe that detection rates may be improved by better
tool understanding of the application database model. More
basic scanner modifications such as adding a second user
login for observing cross-account stored vulnerabilities and
better management of observational passes after the initial
injection pass should also improve detection results in these
categories.

As far as site coverage, the low coverage results for
SilverLight, Flash and Java Applets and the false positives
triggered by the “benign” Javascript trap lead us to suggest
another area of improvement for black-box scanners: better

understanding of active content and scripting languages.

ACKNOWLEDGMENT

The authors would like to thank Acunetix, Cenzic, IBM,
McAfee, Qualys, and Rapid7 for their participation in this
study.

REFERENCES

[1] StrongWebmail CEO’s mail account hacked via XSS. ZDNet.
[Online]. Available: http://blogs.zdnet.com/security/?p=3514

[2] D. Litchfield. SQL Injection and Data Security Breaches.
[Online]. Available: http://www.davidlitchfield.com/blog/
archives/00000001.htm

[3] Websites of WHO and MI5 Hacked Using XSS
Attacks. Spamfigher.com. [Online]. Available: http:
//tinyurl.com/yfqauzo

[4] Approved Scanning Vendors. Payment Card Industry
Security Standards Council. [Online]. Available: https:
//www.pcisecuritystandards.org/pdfs/asv report.html

[5] VUPEN Security. [Online]. Available: http://www.vupen.com

[6] National Vulnerability Database. Dept. of Homeland Security
National Cyber Security Division. [Online]. Available:
http://web.nvd.nist.gov

[7] OWASP Top Ten Project. Open Web Application Security
Project. [Online]. Available: http://www.owasp.org/index.
php/Category:OWASP Top Ten Project

[8] Web Security Threat Classification. Web Application Security
Consortium. [Online]. Available: http://www.webappsec.org/
projects/threat/

[9] Common Weakness Enumeration. [Online]. Available: http:
//cwe.mitre.org

[10] H. Bojinov, E. Bursztein, and D. Boneh, “Xcs: cross channel
scripting and its impact on web applications,” in CCS ’09:
Proceedings of the 16th ACM conference on Computer and
communications security. New York, NY, USA: ACM, 2009,
pp. 420–431.

[11] Common Vulnerabilities and Exposures. [Online]. Available:
http://cve.mitre.org

[12] D. Kaminsky, “Black Ops of PKI,” BlackHat USA, August
2009.

[13] M. Marlinspike, “More Tricks For Defeating SSL,” BlackHat
USA, August 2009.

[14] E. V. Nava and D. Lindsay, “Our Favorite XSS Filters and
How to Attack Them,” BlackHat USA, August 2009.

[15] Open Web Application Security Project. [Online]. Available:
http://www.owasp.org

[16] Web Application Security Consortium. [Online]. Available:
http://www.wasc.org

[17] Web Application Security Statistics. Web Application
Security Consortium. [Online]. Available: http://projects.
webappsec.org/Web-Application-Security-Statistics

[18] Software Assurance Tools: Web Application Security Scanner
Functional Specification, National Institute of Standards and
Technology Std., Rev. 1.0.

[19] Web Application Security Scanner Evalua-
tion Criteria. Web Application Security Consor-
tium. [Online]. Available: http://projects.webappsec.org/
Web-Application-Security-Scanner-Evaluation-Criteria

[20] G. Wassermann and Z. Su, “Sound and precise analysis of
web applications for injection vulnerabilities,” SIGPLAN Not.,
vol. 42, no. 6, pp. 32–41, 2007.

[21] M. S. Lam, M. Martin, B. Livshits, and J. Whaley, “Securing
web applications with static and dynamic information flow
tracking,” in PEPM ’08: Proceedings of the 2008 ACM
SIGPLAN symposium on Partial evaluation and semantics-
based program manipulation. New York, NY, USA: ACM,
2008, pp. 3–12.

[22] A. Kieżun, P. J. Guo, K. Jayaraman, and M. D. Ernst,
“Automatic creation of SQL injection and cross-site script-
ing attacks,” in ICSE’09, Proceedings of the 30th Interna-
tional Conference on Software Engineering, Vancouver, BC,
Canada, May 20–22, 2009.

[23] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static
analysis tool for detecting web application vulnerabilities
(short paper),” in 2006 IEEE Symposium on Security
and Privacy, 2006, pp. 258–263. [Online]. Available:
http://www.iseclab.org/papers/pixy.pdf

[24] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y.
Kuo, “Securing web application code by static analysis and
runtime protection,” in WWW ’04: Proceedings of the 13th
international conference on World Wide Web. New York,
NY, USA: ACM, 2004, pp. 40–52.

[25] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “Secubat:
a web vulnerability scanner,” in WWW ’06: Proc. 15th Int’l
Conf. World Wide Web, 2006, pp. 247–256.

[26] S. Mcallister, E. Kirda, and C. Kruegel, “Leveraging user
interactions for in-depth testing of web applications,” in RAID
’08: Proc. 11th Int’l Symp. Recent Advances in Intrusion
Detection, 2008, pp. 191–210.

[27] F. Maggi, W. K. Robertson, C. Krügel, and G. Vigna, “Pro-
tecting a moving target: Addressing web application concept
drift,” in RAID, 2009, pp. 21–40.

[28] Web Application Attack and Audit Framework. [Online].
Available: http://w3af.sourceforge.net/

[29] Powerfuzzer. [Online]. Available: http://www.powerfuzzer.
com/

[30] CIRT.net Nikto Scanner. [Online]. Available: http://cirt.net/
nikto2

[31] WebGoat Project. OWASP. [Online]. Available: http://www.
owasp.org/index.php/Category:OWASP WebGoat Project

[32] HacmeBank. McAfee Corp. [Online]. Available: http://www.
foundstone.com/us/resources/proddesc/hacmebank.htm

[33] AltoroMutual Bank. Watchfire Corp. [Online]. Available:
http://demo.testfire.net/

[34] J. Fonseca, M. Vieira, and H. Madeira, “Testing and com-
paring web vulnerability scanning tools for sql injection and
xss attacks,” Pacific Rim Int’l Symp. Dependable Computing,
IEEE, vol. 0, pp. 365–372, 2007.

