ACM Computer and Communication security 2011 (CSS’2011)

Text-based CAPTCHA Strengths and
Weaknesses

Elie Bursztein, Stanford University elie@cs.stanford.edu
Matthieu Martin, Stanford University mamartin@stanford.edu
John C. Mitchell jem@cs.stanford.edu

The slides and paper are available from free from http://1ly.t1/p22

Follow Elie onTwitter : https://twitter.com/elie and Google+: http://ly.tl/g

http://1ly.tl/p22

http://ly.tl/p22
https://twitter.com/elie
http://ly.tl/g
http://ly.tl/p22

Text-based CAPTCHA Strengths and Weaknesses

Elie Bursztein, Matthieu Martin, and John C. Mitchell
Stanford University

elie@cs.stanford.edu, mamartin@stanford.edu, mitchell@cs.stanford.edu

ABSTRACT

We carry out a systematic study of existing visual CAPTCHAs based
on distorted characters that are augmented with anti-segmentation
techniques. Applying a systematic evaluation methodology to 15
current CAPTCHA schemes from popular web sites , we find that
13 are vulnerable to automated attacks. Based on this evaluation, we
identify a series of recommendations for CAPTCHA designers and
attackers, and possible future directions for producing more reliable
human/computer distinguishers.

Categories and Subject Descriptors

K.6.5 [Computing Milieux]: Management of Computing and In-
formation Systems—Security and Protection

General Terms
Security, Theory

Keywords

CAPTCHA, reverse Turing test, machine learning, vision algorithm,
SVM, KNN classifier.

1. INTRODUCTION

Many websites use CAPTCHAs [25], or Completely Automated
Public Turing tests to tell Computers and Humans Apart, in an at-
tempt to block automated interactions with their sites. These efforts
may be crucial to the success of these sites in various ways. For
example, Gmail improves its service by blocking access to auto-
mated spammers, eBay improves its marketplace by blocking bots
from flooding the site with scams, and Facebook limits creation
of fraudulent profiles used to spam honest users or cheat at games.
The most widely used CAPTCHA ' schemes use combinations of
distorted characters and obfuscation techniques that humans can
recognize but that may be difficult for automated scripts.

'For readability purpose, we will write the acronym in lowercase.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCS’11, October 17-21, 2011, Chicago, Illinois, USA.

Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

tmg‘.‘.ﬂﬂ?&r

Figure 1: Wikipedia captcha example

Captchas are sometimes called “reverse Turing tests”: because
they are intended to allow a computer to determine if a remote
client is human or not. In spite of their importance, their extremely
widespread use, and a growing number of research studies [7,8,31]
there is currently no systematic methodology for designing or evalu-
ating captchas. In fact, as we substantiate by thorough study, many
popular websites still rely on schemes that are vulnerable to auto-
mated attacks. For example, our automated Decaptcha tool breaks
the Wikipedia scheme, illustrated in figure 1, approximately 25%
of the time. /3 outof /5 of the most widely used current schemes
are similarly vulnerable to automated attack by our tool. Therefore,
there is a clear need for a comprehensive set of design and testing
principles that will lead to more robust captchas.

While fine previous work [7] suggests that captcha security de-
pends on preventing segmentation, we find in our study that relying
on segmentation alone does not provide reliable defense against
automated attacks. For example, it is possible to exploit the fact
that the captcha length is fixed to make an educated guess where to
segment the captcha, even if its anti-segmentation technique can’t
be broken directly. We found that this type of attacks apply to nu-
merous captcha schemes, including eBay and Baidu.

Reflecting on techniques described in the literature [10,32], avail-
able machine-learning techniques [11, 20, 26] available vision al-
gorithms [1, 13, 14], and our own experience with captcha analy-
sis [2,4, 5], we divide the automated captcha-solving process into
five generic steps: pre-processing, segmentation, post-segmentation,
recognition, and post-processing. While segmentation, the sepa-
ration of a sequence of characters into individual characters, and
recognition, identifying those characters, are intuitive and generally
understood, there are good reasons for considering the additional
pre-processing and post-processing steps as part of a standard pro-
cess. For example, preprocessing can remove background patterns
or eliminate other additions to the image that could interfere with
segmentation, while post-segmentation steps can “clean up” the seg-
mentation output by normalizing the size of each image or otherwise
performing steps distinct from segmentation.

After recognition, post-processing can improve accuracy by, for
example, applying spell checking to any captcha that is based on ac-
tual words (such as Slashdot). Based on this generic captcha-solving
architecture, we experimented with various specific algorithms and
tried them on various popular website captchas. From these corpus,
we identified a set of techniques that make captchas more difficult
to solve automatically. By varying these techniques, we created a
larger synthetic corpus that allowed us to study the effect of each
of these features in detail and refine our automated attack methods.
Based on our previous study of how solvable captchas are for hu-
mans [3,5], we focused our attention on a range of techniques that
are within the grasp of human solvers, although we did consider
possible captchas that could be uncomfortably difficult for some
humans.

We tested the efficiency of our tool Decaptcha against real captchas
from Authorize, Baidu, Blizzard, Captcha.net, CNN, Digg, eBay,
Google, Megaupload, NIH, Recaptcha, Reddit, Skyrock, Slash-
dot, and Wikipedia. As far as we know none of these captcha
schemes had been reported broken prior to this work. Of these
15 captchas, we had /%-10% success rate on two (Baidu, Sky-
rock), 10-24% on two (CNN, Digg), 25-49% on four (eBay,
Reddit, Slashdot, Wikipedia), and 50% or greater on five (Autho-
rize, Blizzard, Captcha.net, Megaupload, NIH). To achieve such a
high success rate we developed the first successful attacks against
captcha schemes that use collapsed characters (eBay, Megaupload,
and Baidu). Only Google and Recaptcha resisted to our attack at-
tempts, and we reached some informative understanding of why we
couldn’t break them. Because of Decaptcha genericity we were able
to break 7 of these 15 schemes (Authorize, Baidu, CNN, Megau-
pload, NIH, Reddit, Wikipedia) without writing a new algorithm.

Based on our evaluation of real-world and synthetic captchas,
we extracted several guidelines and suggestions that we believe
will be useful to captcha designers and attackers. For example,
randomizing the captcha length and individual relative character size,
while relatively painless for humans, are important steps for resisting
automated attacks. Similarly, if all characters are the same size,
partial segmentation then gives a good estimate of the number of
characters, again aiding segmentation. Conversely, creating a wave
shape and collapsing or overlayed lines can be effective, relatively
speaking. We also find that complex character sets, which can
be confusing for humans, are not particularly effective, and we
comment on the relative importance of anti-recognition techniques,
implementation errors, preparing alternative “backup” schemes in
case vulnerabilities are discovered. The main contributions of this
work include:

e A generic evaluation tool, Decaptcha, designed to evaluate
quickly captcha security.

e A state-of-the-art evaluation of anti-recognition techniques
and anti-segmentation techniques, and captchas used by the
popular websites.

e Successful attacks by a single tool against 13 out of 15 real
captcha schemes from popular websites and the first success-
ful attacks on captchas that use collapsed characters (e.g eBay
and Baidu).

e A publicly available synthetic corpus designed to replicate
security features of real-world captchas, in ranges potentially
acceptable to humans, so that designers may test new attack
algorithms on them.

e A defense taxonomy and an evaluation of the impact of anti-
recognition techniques on the learnability of captchas by au-
tomated tools.

2. BACKGROUND

Measuring attack effectiveness. A first step to evaluate attack
effectiveness is to measure its accuracy, the fraction of captchas
that were answered correctly by the captcha solver. However, a
particular attacker may choose to respond to some captchas and not
others, depending on the confidence in their guess, as web services
usually limit the number of attempts per IP [2]. Therefore, a more
precise way to evaluate attack effectiveness is through coverage and
precision metrics.

Coverage is the fraction of captchas that the solver attempts to
answer. Precision is the fraction of captchas answered correctly [2].
The captcha design goal is that “automatic scripts should not be
more successful than 1 in 10,000” attempts (i.e. a precision of
0.01%) [18]. However, we believe that this security goal is too
ambitious, random guesses can be sucessful, so we deem a captcha
scheme broken when the attacker is able to reach a precision of at
least 1%.

Another important consideration is how to choose the test set on
which the solver is evaluated. We argue that cross-validation is use-
ful for initial experimentation but is not sufficient to deem a captcha
scheme insecure as it does not reflect real-world conditions where
the solver attacking a website is presented with previously unknown
captchas. Instead we adopt the machine learning community’s best
practices. We use a test set that is entirely different from the training
set to evaluate the solver’s effectiveness. We must avoid skewing
the precision evaluation due to a single easy captcha in the test set.
This is especially important when the solver’s precision is close
to 1% mark. Therefore, we advocate to use a large test set, of at
least 1,000 captchas. Now, the solver must solve at least 10 unseen
captchas before reaching the 1% precision mark required to deem a
scheme insecure. Every evaluation performed in this work follows
these best practices.

Attacking captchas. Prior to this work, state of the art automated
solvers used a three-stage approach consisting of preprocessing,
segmentation and classification stages [9]. Previous experiments
have established that systems combining custom segmentation with
machine learning greatly outperform off-the-shelf OCR system at
breaking captchas. For example, [2] showed that on the eBay audio
captcha, the accuracy of a state of the art speech recognizer does
not exceed 1%, whereas a custom classifier can exceed 75%. This
three-stage approach works as follow: first, the solver pre-processes
the captcha to make it easier to analyze, for instance by remov-
ing colors or by applying noise reduction techniques. Next, the
solver attempts to segment the captcha into chunks that contain
exactly one character, for example by using a clustering algorithm
on the image. Finally, a classifier, such as a support vector machine
(SVM) or a neural network, is used to recognize which character
is contained in each chunk. Accordingly, we will refer to anti-
recognition techniques to describe the image/text manipulations
that aim at preventing the recognition of individual characters and
to anti-segmentation techniques to describe image/text manipula-
tions that aim at preventing the solver from splitting the captcha
into individual characters. We will refer to the core-features to
describe the captcha’s basic design features, including its charset,
font, length, whether this length is random, and so forth.

Many experiments [7] and attacks [32] have demonstrated that
most captcha schemes are broken if they can be reliably segmented.
Accordingly robust text-based schemes must make it difficult for the
solver to determine where each character is. However, even if anti-
segmentation techniques are essential to captcha security, they are
only effective when the captcha core features and anti-recognition
techniques are properly designed and implemented. Instead of solely
focusing on preventing segmentation, we will show in this evalua-
tion section that secure design principles need to be applied at all
layers to create a secure scheme to avoid “side-channel attacks”. Fi-
nally we introduced in [4] a new metric called Learnability which
evaluates captcha strength based on the number of labeled exam-
ples required to train a classifier to a given precision level. Our
learnability metric provides insight into how to properly choose
anti-recognition techniques and core-features.

3. CORPUS

In this section we present the captcha corpus we used to establish
our design principles and breaking techniques. As a starting point
we collected and annotated 15 real-world schemes used by popular
websites to evaluate Decaptcha performances against top-of-the-line
captchas schemes. Decaptcha was able to break 13 of these 15
schemes. We analyzed these captchas to come up with a set of
relevant security features that we used to create our synthetic corpus
designed to study the effect of each of these features in detail and
refine attacking techniques.

3.1 Popular Real World Captchas

To collect a representative sample of captchas, we consulted the
Alexa list of most used websites’ and identified the top sites which
presented captchas as part of their account registration process. Ad-
ditionally, we collected captchas from sites which provide captchas
to other sites, e.g. Recaptcha.net and captchas.net. For each website
or captcha scheme presented in figure 2, we collected directly from
the website, 11,000 captchas that we had labeled by humans via
Amazon crowd-sourcing service Mechanical Turk [5]. Decaptcha is
able to break all of them except Recaptcha and Google.

3.1.1 Real-world Captcha Security Features

As visible in figure 2, real-world captchas exhibit a lot of varia-
tion in their design. By analyzing how each scheme is constructed
we grouped the security defenses used in these schemes into the
following ten techniques. Following the taxonomy presented in sec-
tion 2, these techniques were assigned into the anti-recognition or
the anti-segmentation category. We assigned to the anti-recognition
category every feature that didn’t directly prevent segmentation.

The anti-recognition techniques considered are: 1. Multi-fonts
Using multiple fonts or font-faces. 2. Charset Which charset the
scheme uses. 3. Font size Using variable font size. 4. Distortion
Distorting the captcha globally using attractor fields. 5. Blurring
Blurring letters. 6. Tilting Rotating characters with various angles.
7. Waving Rotating the characters in a wave fashion.

The anti-segmentation techniques considered are: 1. Complex
background Try to hide the text in a complex background to "con-
fuse" the solver. 2. Lines Add extra lines to prevent the solver
from knowing what are the real character segments. 3. Collapsing
Remove the space between characters to prevent segmentation.

Zhttp://www.alexa.com/topsites

Scheme Range from [5] Generated
Authorize 95-98

Baidu 90-93 90
Blizzard 89 - 95 91
Ebay 93-93 94
Recaptcha 72-175 93

Table 1: Optimistic solving accuracy across schemes, compar-
ing real world captchas to generated versions

—_

sb6q n

ETU4
2 & 0\

sbbgn
2 ENng

86X/
¢ Qe
s QIS plief ears

(7S]

spaedue

relief

Figure 3: Real world captchas and our generated versions (gen-
erated on the left, real on the right) Captcha schemes depicted
1:Authorize, 2:Baidu, 3:eBay, 4:Google, 5:Recaptcha

3.2 Synthetic corpus

To generate our synthetic corpus we created a captcha generator.
Using Mechnical turk we experimentally validated that our captcha
generator is able to replicate real-world captchas. Synthetic captchas
created by our generator have a similar accuracy to real world-
captcha. Each generated captcha, (Figure 3), was annotated /000
time by human using Mechanical Turk. We then measured the
overall accuracy of each scheme, and compared these results to the
scheme-level accuracies reported in [5]. While solving accuracy
can be measured exactly for our fake captchas, the real ones used
in our previous work were scraped from the web, and accordingly
their true solutions were not known. So we can only compare our
result to the optimistic solving accuracy metric we used previously.
The table 1 shows for each scheme the optimistic solving accuracies
reported in [5] (one for Mechanical Turk and one for an underground
service) and the solving accuracy we measured on our generated
captchas. As shown in table 1, the solving accuracy for our fake
captchas are similar to the one observed on real world captchas
except for Recaptcha. This experiment support the hypothesis that
our taxonomy and its implementation are able to accurately replicate
real world designs.

4. ATTACKING RECOGNITION

In this section we discuss how to represent a captcha so it is
easy to process by machine learning algorithms. We motivate our
algorithmic choices and evaluate their effectiveness on various anti-
recognitions features. Based on the performance of the different
machine learning algorithms, we can compare and recommend anti-
recognition techniques.

Figure 2: Samples of the 15 popular real world captcha schemes analyzed during our evaluation

4.1 Captcha representation recommendations

Character recognition is a core problem in machine learning. In
the context of captchas prehaps the most relevant work produced by
the machine learning community is on the MNIST database of hand-
written digits challenge [21] which aims to recognize (distorted)
handwritten digits. From this body of work, the most useful article
for captcha security research is [20] which provide a deep analysis
on how to efficiently recognize digits.

Based on this work and confirmed by our experimentations with
Decaptcha on multiples schemes, we recommend:

e Binarize letters: While keeping letters in gray scale is useful
for certain image algorithms, classifiers work better and faster
on binary features so binarizing the letters in black and white
is recommended. For example our custom distance algorithm
is 35% faster on binary vectors than integer (gray scale/color)
vectors.

o Work at the pixel level: The most efficient way to represent
letter is to use a matrix that encodes their pixel representation.
Using “receptors” as, sometime recommended while doing
standard OCR, is not efficient in our case because of the
distortion, rotations and other captcha deformations.

When the captchas can’t be segmented and we have to recognize
the letters without segmentation, an alternative promising approach.
would be to use very high level and complex image descriptors, such
as SURF [1] and SIFT [23], that are invariant to rotation and very
stable against distortion. In theory describing letters with robust
“interest points” will make the approach faster and more stable. A
huge hurdle for using this kind of descriptors to break captchas is
the fact that the number of points that describe each letter can’t
be normalized, which prevents the use of the classifiers that are so
efficient at recognizing characters when combined with the standard
approach.

4.2 Recommended Classifiers

In terms of accuracy, the choice of classifier does not matter
greatly because many modern classifiers perform strikingly well
(i.e. 97% - 99.5%) on the MNIST dataset. Recall that to deem
a scheme insecure our system only needs to reach 1% precision.
In practice, small differences in classifier accuracy never substan-
tially changed system performance. Accordingly instead of using
the classifier that have the best accuracy we choose to evaluate the
classifiers that are the easiest to use. Specifically, we focused on
classifiers that are fast to train and require minimal parameter tuning.

We argue that having a classifier that is easy to parameterize and
which is fast is the best choice for captcha security evaluation be-
cause most of the work is done before the recognition phase, so this
phase should be as stable and as fast as possible. Waiting a couple of
hours or even 15 minutes to see if a modification in the pipeline had
an impact on the breaker performance would make the evaluation a
very tedious process. We choose to use SVM [11] (Support Vector
Machines) because this class of classifiers has become the de-facto
classifier over the last few years and is known to almost always yield
very good performance regardless of the problem. We choose to use
a linear kernel rather than a polynomial kernel which would have
achieved better performance because a linear kernel is an order of
magnitude faster to train and does not require any parameter tweak-
ing. We also recommend using KNN [12] (K Nearest Neighbors)
classifier because it is the fastest classifier and it has nice stability
properties that make it very reliable. The relative simplicity of the
KNN allowed us to write our own version which was optimized to
work on our binary vectors and with our sliding windows algorithm.

KNN requires more configuration than SVM as the number of
neighbors (K) needs to be selected. To remove the burden of setting
it by hand, we rely on a heuristic that computes the optimal K value,
which is often 1, by performing a cross validation on the training set
to find the optimal maximal K value. Because this heuristic requires
quadratic time in the number of vectors in the dataset, we use the
random sampling method when the vector set is too big (> 300).
On our desktop computers, our KNN algorithm takes 20 seconds
to learn a data set of 500 captchas and 2 minutes to classify 1,000
captchas. Because of its speed, KNN is our algorithm of choice
when evaluating real world captcha schemes.

4.3 Anti-recognition features evaluation

Before evaluating real-world captchas, we wanted to compare the
effectiveness of the anti-segmentation features in isolation to under-
stand their impact on the classifier performance. Effectiveness here
is quantified by the scheme learnability and the classifier success
rate. To compute these numbers we repeatedly trained our classifier
varying the size of the training set from 10 to 500 examples. Each
testing phase was done on 1,000 captchas coming from a different
set. The SVM results are summarized in the chart 4(a) and the KNN
results are summarized in the chart 4(b).

The first observation we can make about these results is the fact
that they support our claims that any reasonable classifier is “good
enough" to build a captcha breaker. Overall, the SVM and the KNN
classifiers both achieve very good results and exhibit a very similar
learning rate. The only two major differences is that SVM does
better on distortion (6/% vs 50%) and KNN performs better with
the mix of five complex fonts (62% vs 59%). As predicted by the
theory, the KNN results are also more stable than the SVM ones,
but as visible in the charts, the SVM accuracy jittering is minimal
(at most 5%) and is unlikely to affect the outcome of a security
evaluation.

Recommendation. The results of our evaluation lead us to the
following recommendations regarding anti-segmentation features.

e Use a small non-confusable charset: While using a larger
charset slightly impacts the classifier accuracy and decreases
the scheme’s learnability, the security gain is too small to be
useful: forcing the attacker to learn on 40 captchas instead of
10 reduces the accuracy from /00% to 92% which negligible
compared to the loss in human accuracy (95§% for 0-9 down
to 82% for azAZ09 [3]). Accordingly, since increasing the
charset does not offer a significant security gain, a captcha
charset should be small, with no caps at the very least, and
should not contain confusing letters (e.g. i-j) to make it easy
for humans to solve.

e Don’t use distortion: Applying a distortion is the most ef-
fective way for reducing classifier accuracy and decreasing
scheme learnability. However, this is not sufficient to pre-
vent a classifier from being effective - this should be avoided
and replaced with a proper anti-segmentation technique as
distortion also harms user accuracy significantly [3].

e Use rotation only in conjunction with anti-segmentation:
Rotating characters by itself doesn’t significantly impede clas-
sifier accuracy and learnability; accordingly, their sole use is
in conjunction with anti-segmentation techniques to make the
size of each character unpredictable (See section 5.3).

It is interesting to note here that we ran an additional exper-
iment, in which we tried to learn on straight characters and
tried to classify examples from this dataset. As predicted by
the theory, SVM and KNN can’t recognize rotated characters
if they don’t learn on them. Having classifiers insensitive to
rotation is one of the main rationales behind the creation and
use of more complex classifiers such as CNN (Convolutional
Neural Networks) [20].

e Use multiple fonts: Using multiple fonts is an effective prin-
ciple as it decreases significantly the classifier accuracy and
will render the segmentation more difficult by making the size
of characters unpredictable.

5. SEGMENTATION

As seen in the previous section 4, while carefully chosen anti-
recognition techniques help slow down the learning process and
reduce classifier accuracy, they are not sufficient by themselves. In
this section we analyze the effectiveness of the 7 anti-segmentation
techniques we found in the wild on real captchas schemes and show
their limitations. Note that we made the choice to focus on attack-
ing techniques that are as generic as possible rather that technique
optimized to break a specific captcha scheme. This choice make the
techniques described below applicable to other schemes (we were
able to break 13 schemes with the 7 techniques described below) at
the expense of a couple of accuracy points. Based on the following
analysis, we provide recommendations on which technique to use
and how to implement them.

5.1 Background Confusion

Under the term background confusion we regroup all the tech-
niques that try to prevent segmentation by “blending” the captcha
text with the background. There are three main ways to achieve this:
using a complex image background (figure 5), having a background
that has “very” similar colors to the text (figure 6) and adding noise
to the captcha (figure 7).

Some captchas schemes combine multiples background confusion
techniques. However instead of increasing the security, combining
background confusion techniques often lead to decrease it as it
makes the scheme susceptible to more attacks. This is for example
the case for Authorize (figure 8) which combines color similarity
and noise: using gray noises make it susceptible to de-noising and
anti-color attacks.

Complex background. The idea behind using a complex back-
ground is that the lines/shapes “inside it” will be confused with
the real text and thus will prevent the breaker from isolating and
segmenting the captcha. Eventhough previous works [31] have
demonstrated that usually this type of defense is insecure, many
captchas still rely on it. One of the most prominent examples of
captcha using this type of defense is the one (figure 5) that Bliz-
zard uses for all their websites (World of Warcraft, Starcraft I and
Battle.net) . While they are using random backgrounds generated
from game screenshots to prevent breakers from learning its shape
they still have to make letters “stand out” from the background so
that humans can decipher the captcha. We found out that that the
easiest way to deal with captcha schemes that use random back-
grounds but a finite number of colors is to use a technique that we
call anti-pattern: for all the possible font colors remove everything
from the captcha that is not close to this color and test if you get
a reasonable number of clusters (letters) with the right amount of
pixels. As visible in figure 5, this is very effective against Blizzard
captchas and Decaptcha solves 70% on them.

100%

90%

80% / /
70%

2 60% / /

/_/_‘
f 09

AZ09

AZ09
azAZLO:

—=— Distortion

20% / 3 fonts
10% 5 fonts
// —— Angles

10 20 50 100 200 500
Trainning set size

(a) SVM classifier

100%

90% /
80%

8 /]
Q
3 50% -
//T
///' AZ09
/// A700

azAZLO:

—=— Distortion

/ /_/ 3 fonts
10% 5 fonts
/ —— Angles
0% i T T T 1
10 20 50 100 200 500

Trainning set size

(b) KNN classifier

Figure 4: Effectiveness of classifiers on various anti-recognition features. These graphs depict how fast each classifier precision

improves as more examples are added to the training set.

kboyrz9

kI[N [r[2]9] ko9

Original Pre-processing

Segmentation Post-segmentation

Figure 5: Example of the Blizzard pipeline

Color similarity. A related approach to the complex background
techniques is to use colors that are perceived as very different by
humans but are in reality very close in the RGB spectrum. The best
and most sophisticated example of captcha scheme that uses this
kind of technique is the Skyrock scheme visible in figure 6. While
the letters appear very distinct to the human eye, when represented
on the RGB spectrum they are so close that it is almost impossible
to use the CFS [32] or the Anti-pattern techniques on it. However,
as visible in figure 6, an effective way to counter this defense is
to have the breaker work on a different color representation that is
closer to the human perception, namely the HSV or HSL [29] ones,
and binarize the captcha by using a threshold based on the hue or
the saturation. For Skyrock we use a threshold based on the hue
value. Changing the color space representation allows Decaptcha to
get 2% precision on Skyrock.

Noise. The last and “most efficient” technique used to confuse the
segmentation is to add random noise to the image. For example, this
technique is used in Captcha.net as visible in figure 7. Note that the
noise must have the same color as the text because otherwise the anti-
pattern technique can be applied to remove it. To de-noise captchas
many techniques have been proposed over the years, including using
the standard image filter erode [30]. However it turns out that
using a MRF (Markov Random Field) aka Gibbs algorithm [14]
is far more effective. A Gibbs de-noising algorithm is an iterative
algorithm that works by computing the energy of each pixel based
on its surroundings and removing pixels that have an energy below
a certain threshold. The algorithm completes when there are no
more pixels to remove. The energy of a given pixel is computed
by summing the values on a gray scale of its 8 surrounding pixels
and dividing by 8. As visible in figure 7 this algorithm completely
negates the Captcha.net anti-segmentation defense and, accordingly,
decaptcha is able to achieve 73% precision on Captcha.net.

For Authorize, which also use noise, Decaptcha also achieves
66% precision. As we will see in the next section using the Gibbs
algorithm is also the best approach when the lines are smaller that
the characters.

Recommendation. Overall, we believe that using any background
confusion technique as a security mechanism is not secure and we
recommend not relying on these kinds of techniques. While it is
true that certain complex backgrounds are harder than others to
remove, with sufficient effort and custom pre-processing, it is likely
than any of these backgrounds can be processed. Accordingly, we
recommend using background only for cosmetic purposes.

5.2 Using lines

A second approach to prevent segmentation is to use line(s) that
cross multiple characters. This approach is used by Digg (figure 9)
and Slashdot (figure 10) for instance. While it is possible to use
lines that do not cross multiples characters , like the old Microsoft
captcha, it has been proven to be a totally insecure approach [32]
and is, therefore, not discussed here. In the wild we saw two types
of lines used to prevent segmentation: small lines that cross the
captcha’s letters (e.g. Digg) and large lines of the width as the
characters’ lines that cross entire captchas (e.g. Slashdot and CNN).

Small lines. The first approach is to use small lines that will prevent
the captcha from being segmented. This is the strategy used by Digg
(figure 9). The standard approach to deal with small lines is to use
a histogram-based segmentation [17,31] that projects the captcha
pixels to the X or Y coordinates.

n]u]e[x[5]p]

nuCx5p

Original

Pre-processing

Segmentation Post-segmentation

Figure 6: Example of the Skyrock pipeline

e T e, e ¥ v
Jmevbp | jmevby JESYbP [} we[v[b]p)
o . S .: A . i P,
Original Pre-processing Segmentation Post-segmentation

Figure 7: Example of the Captcha.net pipeline

This approach “works” because the region where the characters
are is denser and therefore will create peaks in the histogram. The
problem with this approach is how to determine the threshold and
the size of the windows around it. It turns out that binarizing the
captcha and then using a Gibbs de-noising algorithm with character
reconstruction (see figure 9) is actually more efficient as it does not
require such a brittle and complex tuning. Using Gibbs Decaptcha is
able to achieve 86% recall and 20% precision on Digg captchas.

Big lines. The second approach is to use lines that have the same
“width” as the character segments. The main advantage of this ap-
proach is that it is not susceptible to de-noising algorithms. However,
it is susceptible to line-finding algorithms, such as the Canny edge
detection [6] and the Hough Transform [13], because the lines cross
the entire captcha. An illustration of our own implementation of
the Hough Transform that preserves letters is visible in figure 10.
As one can see, our implementation is able to find all the lines very
accurately. The difficulty lies in the removal process that must pre-
serve the letters. To do this, before removing a pixel we look at
its surroundings to decide whether or not to remove it. The main
reason behind Decaptcha’s relatively low precision (35% precision)
on Slashdot is the fact that Slashdot fonts have hollow characters
that end up oftentimes damaged beyond repair when the lines are
removed.

Recommendation. Based on our evaluation of captcha schemes we
believe that using lines is a secure anti-segmentation defense when
properly implemented. Overall, the goal of these principles is to
prevent the attacker from finding a discriminator that will allow him
to to tell apart character segments and lines. We recommend that
in addition to the general security principles discussed in section 6,
designers follow the following design principles when implementing
this defense:

e Use large lines: Using lines that are not as wide as the
character segments gives an attacker a robust discriminator
and makes the line anti-segmentation technique vulnerable
to many attack techniques including de-noising, projection-
based segmentation and, in some rare cases, even the simple
erode filter.

o Keep the line within the captchas: Line finding algorithms,
such as the Hough transform, are very efficient at finding lines
so for a defense mechanism to be effective, lines must cross
only some of the captcha letters, so that it is impossible to tell
whether it is a line or a character segment.

e Don’t use a strange slope: Keep the angle of the line on par
with the character segments otherwise the line slope will be
used as a discriminator by the attacker. When using lines as
anti-segmentation waving the captcha and tilting the charac-
ters will help ensure that it is hard for the attacker to distin-
guish between the lines and the character segments.

e Match slopes: The slope of the anti-segmentation lines must
be roughly equivalent to the slope of a subset of the character
segments. Otherwise when projecting in a Hough space the
anti-segmentation lines will appear as outliners that are easily
spotted.

e Match color: Anti-segmentation lines must be in the same
color as the characters.

¢ Randomize the length: Make sure that the length of the line
is variable to prevent the attacker from using its size as a
discriminator.

5.3 Collapsing

Collapsing is considered by far to be the most secure anti-segmentation

technique. While this is generally true, in practice the security of
collapsing is often impeded by design flaws at the core feature level
or at the anti-recognition level. That is why we distinguish two
cases: one where the attacker can exploit a design flaw to predict
the characters’ segmentation despite the collapsing and the case
where there is no flaw and the attacker is forced to “brute force" the
captcha.

Predictable collapsing. Having the characters collapsed either by
removing the space between characters ala Recaptcha or tilting them
sufficiently ala eBay (figure 11) is insufficient to prevent the segmen-
tation because the attacker can still guess where the cuts are likely
to occur if the width of the letters is too regular and/or the number
of letters is known in advance. As visible in figure 11 this is the case
for eBay - we can’t figure out where to cut but we know that there
are 6 digits in their captchas and because the letter width is roughly
always the same, we can make an educated guess and segment with
reasonable success. We call this technique the opportunistic seg-
mentation because it relies on‘“side channel information" to work.
Overall, this segmentation works, as visible in figure 11, by first
applying the standard CFS segmentation and then, based on the size
of each segmented block, deciding how many characters each block
contains using the fact that we either know the length of the captcha
or the average size of the letters. Using this technique Decaptcha is
able to achieve 43% precision on eBay captchas.

eS| [swes | oSS [owes) [(S5EAN | SRS
Original Pre-processing Segmentation Post-segmentation

Figure 8: Example of the Authorize pipeline

Lt er] lpvecs] [pve ca] | | [[Plv]elci#] |

Original Pre-processing Segmentation Post-segmentation

Figure 9: Example of the Digg pipeline using Gibbs

{dsssejnfg\ [d[A[s[s[e[n[t]s]

e

Original Pre-processing Segmentation Post-segmentation

Figure 10: Example of the Slashdot pipeline

597109 527109 507109 507109 | [512[7111019 |

Original Pre-processing Segmentation Post-segmentation

Figure 11: Example of the eBay pipeline

(9 -] (3] (wd | [94] [BE] [BEH]| [zDR1M]

Original Pre-processing Segmentation Post-segmentation

Figure 12: Example of the Baidu pipeline

Wod | ("3 | |waawa | [xx3 | ENEDESE [3 |

Original Pre-processing Segmentation Post-segmentation

Figure 13: Example of the CNN pipeline

Even if it seems at first sight that randomizing either the size of
the letters or the length would be sufficient to prevent this kind of
attack, this is not the case. Take Baidu (figure 12) for example.
Even if Baidu performs heavy tilting and uses lines to prevent the
attacker from guessing where to cut, knowing that the captcha has
a length of 4 and using a projection based segmentation to get rid
of the trailing lines allows Decaptcha to have a 5% precision on
Baidu captchas. It works better on CNN (figure 13) where we get
50% recall and /6% accuracy.

Unpredictable collapsing. When the number of characters is un-
known and the average size of each character is unpredictable as in
the Google captcha case, then the only option is to try to recognize
each letter of the captcha directly without segmenting it. This kind
of approach is fairly common and one solution might be to train on
character templates segmented by hand and then use a space dis-
placement neural network [24] to recognize the characters without
segmenting first.

Recommendation. We recommend to use collapsing as the main
anti-segmentation technique. Provided that all the other aspects of
the captcha are properly designed, this anti-segmentation technique
provides an efficient defense against segmentation. It is also advised
to not use too aggressive collapsing, as after a certain threshold
(-5px) the human accuracy drops drastically [3].

6. DESIGN PRINCIPLES FOR CREATING
A SECURE CAPTCHA

In this section we briefly summarize our results, on both our
synthetic corpus and on real-world captchas, to provide a compre-
hensive assessment of the state of the art. We then provide general
principles for how to design secure captchas based on the lessons
learned while doing this massive evaluation. We finish by discussing
future research directions that are likely to change the current state
of the art sooner or later.

6.1 Real World Captchas Evaluation Summary

Table 2 summarizes Decaptcha recall and precision on the /5
real-world schemes that we use as the basis of evaluation during the
course of this work. For all the results provided in this table, we
followed our recommended best practices and tested Decaptcha on
1,000 testing examples that were never used during the exploration
or training phase. We only report in this table the precision achieved
by KNN on 500 examples as SVM achieved very similar results.
Our results also support our proposal to use the 1% precision mark
to deem a scheme broken as we either clearly break a scheme or
we don’t, but we are never in the range of the 0.5% success rate.
This evaluation also supports our claim (Section 4) that the best
classifiers to evaluate image captcha security are those which are the
simplest to configure and fastest to run, as recognition was never the
bottleneck. Another thing we learned from this evaluation is that the
design flaws introduced at the core feature and anti-recognition lev-
els make a huge difference in the captcha scheme’s overall security,
regardless of the anti-segmentation technique(s) used. For example,
because Slashdot used words we were able to bump Decaptcha accu-
racy from 24% to 35% by loosening the segmentation process and
relying heavily on the spellchecking process. Similarly, we wouldn’t
have been able to achieve 43% precision on eBay captchas without
exploiting the fact that they are using a fixed number of digits and a
very regular font width.

Opverall, while we were able to break every scheme except Google
and Recaptcha to a certain extent, it is clear that some schemes were
more broken than others. When compared to the anti-segmentation
technique used it is clear that relying on lines or collapsing is more
secure than relying on a confusion background.

The figure 14 depicts the learning rate of Decaptcha against the
various real-world schemes. The first observation we can make is
that with 100 captchas we are already able to know if the scheme is
broken or not. The second thing that we can notice is that the anti-
segmentation techniques affect the learning rate: when these curves
are compared to the earlier ones that focused on anti-recognition
techniques only (Figures 4(a), 4(b)) it is apparent that the learning
rate is slower when anti-recognition techniques are solely used. The
shape of the real world scheme learning curves are very similar to
the shape of the distortion technique curve which also tampers with
letters integrity.

Scheme Recall Precision Anti-segmentation
Authorize 84% 66% background confusion
Baidu 98% 5% collapsing

Blizzard 75% 70% background confusion
Captcha.net 96% 73% background confusion
CNN 50% 16% line

Digg 86% 20% line

eBay 95% 43% collapsing

Google 0% 0% collapsing
Megaupload n/a 93% collapsing

NIH 87% 72% background confusion
Recaptcha 0% 0% collapsing

Reddit 71% 42% background confusion
Skyrock 30% 2% background confusion
Slashdot 52% 35% lines

Wikipedia 57% 25% n/a

Table 2: Real world captchas summary

6.2 Design principles

Based on our evaluation results and experimentation with De-
captcha , we derived the following core set of design principles
that captcha designers need to follow to create schemes resilient to
state of the art attackers. Overall, captcha scheme security comes
from having a sound and coherent design at the core design, anti-
recognition and anti-segmentation levels. Anti-segmentation tech-
niques are only effective if the anti-recognition techniques and core
design are sound. For example, using collapsing is only effective
if the size and the number of characters are random. Failling to
randomize either of these leaves the scheme vulnerable to an op-
portunistic segmentation such as in the eBay scheme. The Google
scheme that implements all the design principles proposed in this
section remains unbroken even-though it is in use for more than 4
years.

Core feature principles. The following principles apply to the
design of the captcha core features:

1. Randomize the captcha length: Don’t use a fixed length, it
gives too much information to the attacker.

2. Randomize the character size: Make sure the attacker can’t
make educated guesses by using several font sizes / several
fonts. As reported in section 4, using several fonts reduces
the classifier accuracy and the scheme’s learnability.

Authorize
— Baidu
== Blizzard
=i Captcha.net

CNN

Digg
-+ eBay
-+ Megaupload

NIH
=v- Reddit
=+ Skyrock

Slashdot
=+ Wikipedia

70%

% success

Trainning set size

Figure 14: Real schemes learnability: Accuracy of Decaptcha using KNN vs the size of the training set. Logarithmic scale

3. Wave the captcha: Waving the captcha increases the diffi-
culty of finding cut points in case of collapsing and helps
mitigate the risk of the attacker finding the added line based
on its slope when using lines.

Anti-recognition.

1. Use anti-recognition techniques as a means of strengthen-
ing captcha security: Don’t rely on anti-recognition tech-
niques to protect your scheme, use them to strengthen the
overall captcha scheme security. Because most classifier ef-
ficiency is sensitive to rotation, scaling and rotating some
characters and using various font sizes will reduce the recog-
nition efficiency and increase the anti-segmentation security
by making character width less predictable.

2. Don’t use a complex charset: Using a large charset does not
improve significantly the captcha scheme’s security and really
hurts human accuracy, thus using a non-confusable charset is
the best option.

Anti-Segmentation.

1. Use collapsing or lines: Given the current state of the art, us-
ing any sort of complex background as an anti-segmentation
technique is considered to be insecure. Using lines or col-
lapsing correctly are the only two secure options currently.
Complex background can be used as a second line of defense
(e.g. the ellipses used in some Recaptcha’s captchas).

7.

2. Be careful while implementing: To be effective, anti-segmentation
techniques must be implemented very carefully. When using
lines, follow all the recommendations provided in section 5.2
and when implementing collapsing, make sure to follow the
recommendations provided in section 5.3.

3. Create alternative schemes: As with cryptography algo-
rithms, it is good practice to have alternative captcha schemes
that can be rolled out in case of a break. Variations of the same
battle-hardened schemes with additional security features is
likely the easiest way to prepare alternative schemes. This
seems to be the strategy of Recaptcha, which has alternative
schemes that surface from time to time.

DECAPTCHA

In this section we present our captcha breaker, Decaptcha, which

is able to break many popular captchas including eBay, Wikipedia
and Digg. Then we discuss the rationale behind its five stage
pipeline, its benefits, and its drawbacks, and conclude by deriv-
ing principles on how do build a successful solver.

Decaptcha implements a refined version of the three stage ap-

proach in 15,000 lines of code in C#. We chose C# because it offers
a good tradeoff between speed, safety, robustness and the availability
of Al/Vision libraries. We also chose C# because of the visual studio
interface builder quality, as evaluating captcha security efficiently
requires designing a fairly complex Ul for debugging and tweak-
ing purposes. Decaptcha uses the aForge framework [19] and the
Accord framework that provide easy access to image manipulation
filters, and standard machine learning algorithms such as SVM [11].

Image Matrix

Segments matrices

Segments matrices Potential answer

{D g i }—-[Recognition H Post-processing }—» Final answer

Pipeline cmma[- } { }
Example Yy 5% fs MEENFN

NEHNEHS k356fs k356fs

Figure 15: Decaptcha pipeline

Opverall, although we tried to use existing libraries as much as pos-
sible we ended up writing roughly 80% of Decaptcha code, which
took us at least a year of development. For example, we rewrote a
KNN algorithm [12] because we needed a confidence metric and
we rewrote various distance algorithms to maximize the speed on
binary vectors. Note that Decaptcha in its current version is able to
work on audio and image captchas.

7.1 Decaptcha pipeline

Decaptcha uses the five stage pipeline illustrated in figure 15.
These stages are:

1. Preprocessing: In this first stage, the captcha’s background is
removed using several algorithms and the captcha is binarized
(represented in black and white) and stored in a matrix of
binary values. Transforming the captcha into a binary matrix
makes the rest of the pipeline easier to implement, as the
remaining algorithm works on a well-defined abstract object.
The downside of using a binary representation is that we lose
the pixel intensity. However in practice this was never an
issue.

2. Segmentation: In this stage Decaptcha attempts to segment
the captchas using various segmentation techniques, the most
common being CFS [32] (Color Filling Segmentation) which
uses a paint bucket flood filling algorithm [28]. This is the de-
fault segmentation technique because it allows us to segment
the captcha letters even if they are tilted, as long as they are
not contiguous.

3. Post-Segmentation: At this stage the segments are processed
individually to make the recognition easier. During this phase
the segments’ sizes are always normalized.

4. Recognition: In training mode, this stage is used to teach the
classifier what each letter looks like after the captcha has been
segmented. In testing mode, the classifier is used in predictive
mode to recognize each character.

5. Post-processing: During this stage the classifier’s output is
improved when possible. For example, spell checking is
performed on the classifier’s output for Slashdot because we
know that this captcha scheme uses dictionary words. Using
spellchecking allows us to increase our precision on Slashdot
from 24% to 35% .

7.2 Design principles to write a captcha solver

Before writing the full blown version of Decaptcha in C#, we
wrote a prototype in Ruby two years ago. Building this prototype
allowed us to learn a couple of key principles that need to be applied
to create a sucessful evaluation framework.

Here is the list of the four main design principles specific to
captcha breaking that made the current Decaptcha implementation
(Figure 16) an effective attack framework:

1. Aiming for generality: Decaptcha development was focused
on algorithm generality and simplicity rather than accuracy
optimization. We made this choice very early as we believed
that on the long run it will yield better results. The fact that
we were able to break the last three schemes evaluated in this
paper, namely CNN, Megaupload and Reddit, in less than 3
hours without writing a new algorithm support this hypothesis.
Overall we believe that this focus on generality and simplicity
is what makes Decaptcha truly different from the previous
add-hoc designed to break a single scheme.

2. Immediate visual feedback: When trying to break a captcha
scheme most of the time is spend on trying and tweaking
various algorithms, so it is essential to have quick feedback
on how the change affected the attack’s performance. We
discovered that it is far more effective to provide this feedback
in a pie chart form with a defined color code than use a table
with raw numbers. As visible in figure 16 in Decaptcha the
pie chart is in the center of the interface, which allows us
to immediately see how efficient the current pipeline is. For
example, in the screenshot it is very easy to see that in this
tryout we have an overall success of 66% (green) on Blizzard
captchas, that 5% of the failures occur at the recognition
stage (yellow), 18% - at the segmentation stage (orange) and
11% - at the pre-processing stage (red).

3. Visual debugging: Similarly, we discovered that the only
way to understand quickly how an algorithm is behaving is to
look at how it affects and interacts with the captchas. That is
why the ability to view the visual pipeline for a given captcha
sample with a simple click is essential. In Decaptcha we
implemented this principle by allowing the user to display a
given captcha pipeline stage on the right side of the interface
by clicking on a captcha from the list located in the middle
of the interface. For example, in the example of figure 16,
we selected a captcha that failed the segmentation stage and
the fact that the failure occurs at the segmentation is clear by
looking at the pipeline states. It also makes it very easy to
understand that this segmentation failure is due to an error
of our anti-pattern algorithm, which removed most of the
background pattern except a few pixels at the bottom right,
due to the similarity of their color to the text color.

LogDisplay (NI siashdot New

States

Configuration
ap

(i M

Croplmage
4 Segmentation
Vani

ing: Starting =
| CREE)
oy L [nR
ing: Ending : Success
oring ﬂh SN

4 L
b und 138
Vani on: Nu nDY S ™ v 3
Vanilla-Segmentation: Number of pixels found 24
12 found 56 .

Vanilla-Segmentation: Number of pixels found 104
Y S m vl J

Ve
Segmentation
Preprocessing

Se:
kahyrg8_wow 02838 Segmentation

Save

Figure 16: Decaptcha interface

4. Algorithm independence: Finding the optimal set of al-
gorithms to break a given scheme is not trivial and often
we ended up swapping one algorithm for another either be-
cause we found a better-performing algorithm or because we
changed the approach. For example, for de-noising a captcha
we moved from using an anti-pattern algorithm to a Markov
Random Field algorithm [14]. Being able to combine algo-
rithms as “lego bricks” without worrying about side effects
is one of the keys to Decaptcha ’s success. Having a flexible
pipeline is achieved by abstracting the image representation
as a matrix and ensuring that every algorithm has no side
effects. This design also allows us to parallelize pipeline ex-
ecutions which is important because image processing and
machine learning algorithms are usually slow. The algorithm
independence principle is also what allows Decaptcha to work
on image and audio captchas indistinctly.

5. Exposing algorithm attributes: Being able to change al-
gorithm parameters such as a threshold without editing and
recompiling the code makes a huge difference. Oftentimes,
by tweaking parameters we were able to gain up to 40%
in accuracy or segmentation efficiency. We tried to find a
way to automatically optimize parameters but it turned out
that modifying the parameters in one algorithm in isolation
is not effective, as changing the behavior of one algorithm
often requires re-adjusting parameters of algorithms used later
in the pipeline. For example, being more aggressive when
de-noising will force us to be more aggressive when recon-
structing the captcha’s characters afterward.

8. FURTHER RELEVANT WORK

In this section we summarize the related work cited in the paper
and discuss further relevant work.

Captcha. In [10] the authors propose using machine learning classi-
fiers to attacks captchas. In [7] the same authors study how efficient
statistical classifier are at recognizing captcha letters. In [5] the
authors study how good humans are at solving well-known captchas
using Mechanical Turk.

In [15] the authors were able to break the Microsoft ASIRRA
captcha using SVM. In [32] the authors were able to break the old
Microsoft captcha using the two phase approach. In [30] the author
proposes using the erode and dilate filter to segment captchas. [31]
is one of the first papers to propose the use of histogram-based
segmentation against captchas.

Recognition algorithm. The perceptron, the simplest neural net-
work, has been used as a linear classifier since 1957 [27]. The
convolutive neural networks which are considered to be the most
efficient neural network to recognize letters were introduced in [20].
The space displacement neural network that attempts to recognize
digits without segmentation was introduced in [24]. The support
vector machines were introduced in [11]. The KNN algorithm is
described in detail in [12]. The use of a bag of features to recognize
objects in images is a very active field. The closest work to ours in
this area is by [22], where the authors try to segment and categorize
objects using this approach.

Machine vision algorithms. Detecting and removing lines is a well
studied field in computer vision since the *70s. Two well-known and
efficient algorithms that can be used against captchas with lines are
the Canny detection [6] and the Hough Transform [13]. Removing
noise using a Markov Random Field (Gibbs) was introduced in [14].
Many image descriptors have been proposed over the last decades:
one of the first and most used descriptors is the the Harris Corner
detector [16] introduced in 1988. However, recently it has been
replaced by more complex descriptors that are insensitive to scale
and rotation (to a certain extent). Of these, the two most notable and
promising for dealing with captchas are SIFT [23] and SURF [1].

9. CONCLUSION

As a contribution toward improving the systematic evaluation and
design of visual captchas, we evaluated various automated methods
on real world captchas and synthetic one generated by varying
significant features in ranges potentially acceptable to human users.
We evaluated state-of-the-art anti-segmentation techniques, state-of-
the-art anti-recognition techniques, and captchas used by the most
popular websites.

We tested the efficiency of our tool Decaptcha against real captchas
from Authorize, Baidu, Blizzard, Captcha.net, CNN, Digg, eBay,
Google, Megaupload, NIH, Recaptcha, Reddit, Skyrock, Slashdot,
and Wikipedia. On these 15 captchas, we had /%-/0% success rate
on two (Baidu, Skyrock), 10-24% on two (CNN, Digg), 25-49%
on four (eBay, Reddit, Slashdot, Wikipedia), and 50% or greater
on five (Authorize, Blizzard, Captcha.net, Megaupload, NIH). To
achieve such a high success rate we developed the first successful
attacks on captchas that use collapsed characters (eBay and Baidu).
Only Google and Recaptcha resisted to our attack attempts, and we
reached some informative understanding of why we couldn’t break
them. Because of Decaptcha genericity we were able to break 7 of
these 15 schemes without writing a new algorithm. Overall, our
analysis led to a series of recommendations for captcha designers,
including recommendations to use some anti-segmentation tech-
niques, and recommendations not to use features that are ineffective
against automated attacks but counterproductive for humans.

Acknowledgment

We thank Markus Jakobsson, Dave Jackson, Aleksandra Korolova
and our anonymous reviewers for their comments and suggestions.
This work was partially supported by the National Science Founda-
tion, the Air Force Office of Scientific Research, and the Office of
Naval Research.

10. REFERENCES

[1] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up
robust features. Computer Vision—ECCV 2006, pages
404-417, 2006.

[2] E. Bursztein and S. Bethard. Decaptcha: breaking 75% of
eBay audio CAPTCHAs. In Proceedings of the 3rd USENIX
conference on Offensive technologies, page 8. USENIX
Association, 2009.

[3] E. Bursztein, S. Bethard, Fabry C., Dan Jurafsky, and John C.
Mitchell. Design parameters and human-solvability of
text-based captchas. To appears.

[4] Elie Bursztein, Romain Bauxis, Hristo Paskov, Daniele Perito,
Celine Fabry, and John C. Mitchell. The failure of noise-based
non-continuous audio captchas. In Security and Privacy, 2011.

[5] Elie Bursztein, Steven Bethard, John C. Mitchell, Dan
Jurafsky, and Celine Fabry. How good are humans at solving
captchas? a large scale evaluation. In Security and Privacy,
2010.

[6] J. Canny. A computational approach to edge detection.
Readings in computer vision: issues, problems, principles,
and paradigms, 184:87-116, 1987.

[7]1 K. Chellapilla, K. Larson, P.Y. Simard, and M. Czerwinski.
Computers beat humans at single character recognition in
reading based human interaction proofs (hips). In CEAS, 2005.

[8] K Chellapilla and P Simard. Using machine learning to break
visual human interaction proofs. In MIT Press, editor, Neural
Information Processing Systems (NIPS), 2004.

[9] K. Chellapilla and P. Simard. Using machine learning to break
visual human interaction proofs (HIPs). Advances in Neural
Information Processing Systems, 17, 2004.

[10] K. Chellapilla and P.Y. Simard. Using machine learning to
break visual hips. In Conf. on Neural Information Processing
Systems, NIPS 2004, 2004.

[11] C. Cortes and V. Vapnik. Support-vector networks. Machine
learning, 20(3):273-297, 1995.

[12] B.V. Dasarathy. Nearest Neighbor ({NN}) Norms:{NN}
Pattern Classification Techniques. 1991.

[13] R.O. Duda and P.E. Hart. Use of the Hough transformation to
detect lines and curves in pictures. Communications of the
ACM, 15(1):11-15, 1972.

[14] S. Geman and D. Geman. Stochastic relaxation, Gibbs
distributions and the Bayesian restoration of images*. Journal
of Applied Statistics, 20(5):25-62, 1993.

[15] P. Golle. Machine learning attacks against the asirra captcha.
In ACM CCS 2008, 2008.

[16] C. Harris and M. Stephens. A combined corner and edge
detector. In Alvey vision conference, volume 15, page 50.
Manchester, UK, 1988.

[17] S.Y. Huang, Y.K. Lee, G. Bell, and Z. Ou. A projection-based
segmentation algorithm for breaking MSN and YAHOO
CAPTCHAS. In Proceedings of the World Congress on
Engineering, volume 1. Citeseer, 2008.

[18] P Simard K Chellapilla, K Larson and M Czerwinski.
Building segmentation based human- friendly human
interaction proofs. In Springer-Verlag, editor, 2nd Int’l
Workshop on Human Interaction Proofs, 2005.

[19] Andrew Kirillov. aforge framework.
http://www.aforgenet.com/framework/.

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278-2324, 1998.

[21] Yann Lecun. The mnist database of handwritten digits
algorithm results.
http://yann.lecun.com/exdb/mnist/.

[22] B. Leibe, A. Leonardis, and B. Schiele. Robust object
detection with interleaved categorization and segmentation.
International Journal of Computer Vision, 77(1):259-289,
2008.

[23] D.G. Lowe. Object recognition from local scale-invariant
features. In iccv, page 1150. Published by the IEEE Computer
Society, 1999.

[24] O. Matan, C.J.C. Burges, and J.S. Denker. Multi-digit
recognition using a space displacement neural network.
Advances in Neural Information Processing Systems, pages
488-488, 1993.

[25] Moni Naor. Verification of a human in the loop or
identification via the turing test. Available electronically:
http://www.wisdom.weizmann.ac.il/~naor/
PAPERS/human.ps, 1997.

[26] R. Quinlan. Machine Learning. Morgan Kaufmann Pub.

[27] F. Rosenblatt. The perceptron: a perceiving and recognizing
automation (projet PARA), Cornell Aeronautical Laboratory
Report. 1957.

[28] Wikipedia. Flood fill algorithm.
http://en.wikipedia.org/wiki/Flood_fill.

[29] Wikipedia. Hsl and hsv color representaiton.
http://en.wikipedia.org/wiki/HSL_and_HSV.

[30] J. Wilkins. Strong captcha guidelines v1. 2. Retrieved Nov,
10:2010, 2009.

[31] J. Yan and A.S.E. Ahmad. Breaking visual captchas with
naive pattern recognition algorithms. In ACSAC 2007, 2007.

[32] J. Yan and A.S. El Ahmad. A Low-cost Attack on a Microsoft
CAPTCHA. In Proceedings of the 15th ACM conference on
Computer and communications security, pages 543-554.
ACM, 2008.

http://www.aforgenet.com/framework/
http://yann.lecun.com/exdb/mnist/
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.ps
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.ps
http://en.wikipedia.org/wiki/Flood_fill
http://en.wikipedia.org/wiki/HSL_and_HSV

	1 Introduction
	2 Background
	3 Corpus
	3.1 Popular Real World Captchas
	3.1.1 Real-world Captcha Security Features

	3.2 Synthetic corpus

	4 Attacking Recognition
	4.1 Captcha representation recommendations
	4.2 Recommended Classifiers
	4.3 Anti-recognition features evaluation

	5 Segmentation
	5.1 Background Confusion
	5.2 Using lines
	5.3 Collapsing

	6 Design Principles for Creating a Secure Captcha
	6.1 Real World Captchas Evaluation Summary
	6.2 Design principles

	7 Decaptcha
	7.1 Decaptcha pipeline
	7.2 Design principles to write a captcha solver

	8 Further Relevant Work
	9 Conclusion
	10 References

