
Text-based captchas
strengths and weakness

Elie Bursztein, Matthieu Martin, John Mitchell
Stanford University

1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

• Presenter: Elie Bursztein (http://elie.im)

• Conference: ACM CCS 2011

• Slides and paper freely available from http://ly.tl/p22

• Follow me for more security research

• Twitter @elie

• Google+

• Facebook

About this Research

http://ly.tl/t1
http://ly.tl/t1
http://elie.im
http://elie.im
http://ly.tl/p22
http://ly.tl/p22
http://twitter.com/elie
http://twitter.com/elie
http://ly.tl/g
http://ly.tl/g
http://www.facebook.com/bursztein
http://www.facebook.com/bursztein

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Funny Captchas

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Funny Captchas

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Funny Captchas

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Funny Captchas

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Funny Captchas

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

The world most-popular captchas

•

[eBay]

[Baidu]

[Captcha.net]

[NIH]

[Wikipedia]

[Digg]

[Blizzard]

[Google]

[Skyrock]

[Recaptcha]

[Authorize]

[CNN]
[Megaupload]

[Reddit]

[Slashdot]

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Focus of this talk

• xw

How to break text captcha and
 design secure ones

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Based on the break of 13 of the most
 popular schemes

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Outline

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Outline

• How to break text-captchas ?

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Outline

• How to break text-captchas ?

• Evaluating anti-recognition techniques security

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Outline

• How to break text-captchas ?

• Evaluating anti-recognition techniques security

• Attacking anti-segmentation techniques

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Outline

• How to break text-captchas ?

• Evaluating anti-recognition techniques security

• Attacking anti-segmentation techniques

• Real-world captcha security summary

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Outline

• How to break text-captchas ?

• Evaluating anti-recognition techniques security

• Attacking anti-segmentation techniques

• Real-world captcha security summary

• Decaptcha (our breaker) demo

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Outline

• How to break text-captchas ?

• Evaluating anti-recognition techniques security

• Attacking anti-segmentation techniques

• Real-world captcha security summary

• Decaptcha (our breaker) demo

• Lessons learned

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking captcha

Divide and Conquer approach

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

How to break captchas ?

Slashdot captcha

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

How to break captchas ?

Preprocessing

Slashdot captcha

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

How to break captchas ?

Preprocessing

Slashdot captcha

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

How to break captchas ?

PreprocessingSegmentation

Slashdot captcha

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

How to break captchas ?

PreprocessingSegmentation

Slashdot captcha

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

How to break captchas ?

PreprocessingSegmentationPost-segmentation

Slashdot captcha

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

How to break captchas ?

PreprocessingSegmentationPost-segmentation

Slashdot captcha

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

How to break captchas ?

PreprocessingSegmentationPost-segmentationRecognition

Slashdot captcha

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

How to break captchas ?

PreprocessingSegmentationPost-segmentationRecognition f a e t e s t

Slashdot captcha

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

How to break captchas ?

PreprocessingSegmentationPost-segmentationRecognition f a e t e s tPost-recognition

Slashdot captcha

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

How to break captchas ?

PreprocessingSegmentationPost-segmentationRecognition f a e t e s tf a s t e s tPost-recognition

Slashdot captcha

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition techniques

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition techniques

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition techniques

Blurring

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition techniques

Blurring

Distortion

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition techniques

Blurring

Distortion

Rotation

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition techniques

Blurring

Distortion

Rotation

Fonts

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition techniques

Blurring

Distortion

Rotation

Fonts

Charsets

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

SVM learning rate
%

 s
uc

ce
ss

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Trainning set size
10 20 50 100 200 500

09
AZ09
azAZ09
Distortion
3 fonts
5 fonts
Angles

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

KNN learning rate
%

 s
uc

ce
ss

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Trainning set size
10 20 50 100 200 500

09
AZ09
azAZ09
Distortion
3 fonts
5 fonts
Angles

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-segmentation techniques

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Background confusion

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Background confusion

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Background confusion

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Background confusion

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Lines

Background confusion

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Lines

Background confusion

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Lines

Background confusion

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Lines

Background confusion

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Lines

Collapsing

Background confusion

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Lines

Collapsing

Background confusion

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Lines

Collapsing

Background confusion

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Lines

Collapsing

Background confusion

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking World of Warcraft

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking World of Warcraft

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking World of Warcraft

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking World of Warcraft

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking World of Warcraft

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Captcha.net

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Captcha.net

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Captcha.net

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Captcha.net

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Captcha.net

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Wikipedia

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Wikipedia

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Wikipedia

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Wikipedia

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Wikipedia

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Digg

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Digg

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Digg

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Digg

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Digg

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Slashdot

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Slashdot

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Slashdot

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Slashdot

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Slashdot

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking eBay

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking eBay

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking eBay

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking eBay

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking eBay

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Failing to break eBay

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Failing to break eBay

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Failing to break eBay

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Failing to break eBay

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Failing to break eBay

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Baidu

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Baidu

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Baidu

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Baidu

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Baidu

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Baidu

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Real-world captchas security summary

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Overall results
Segmentation rate Solving rate

Authorize 84% 66%

Baidu 98% 5%

Blizzard 75% 70%

Captcha.net 96% 73%

CNN 50% 16%

Digg 86% 20%

eBay 95% 43%

Google 0% 0%

MegaUpload n/a 93%

NIH 87% 72%

Recaptcha 0% 0%

Reddit 71% 42%

Skyrock 30% 2%

Slashdot 52% 35%

Wikipedia 57% 25%

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Learning rate for real schemes
%

 s
uc

ce
ss

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Trainning set size
10 20 50 100 200 500

Authorize
Baidu
Blizzard
Captcha.net
CNN
Digg
eBay
Megaupload
NIH
Reddit
Skyrock
Slashdot
Wikipedia

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Lessons learned

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Building a breaker guidelines

• Immediate visual feedback

• Visual debugging

• Algorithm independence

• Exposing algorithm parameters

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Decaptcha main interface

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Demo time

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Core principles

• Randomize the length

• Randomize the character size

• Wave the captcha

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition principles

• Use anti-recognition as a means of strengthening
captcha security

• Don’t use a complex charset

• Bad for human (see our research on this)

• Useless for security

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

The Robustness of Google Captchas

• New heuristic to break
the easy version of
Google / Recaptcha

• Published online in May
2011

• Use letters shape as a
side-channel

• Conclusion reduce your
charset (not t or s...)

relatively large pixel count if vertically overlapping and in close
proximity with character loop(s). We developed heuristics based
on the pixel count and the relative position of loops to detect and
remove connection loops. Figure 6 (b) shows a different example
containing a “connection loop” before and after removal.

(a)

(b)

Figure 6. Detection of characters with a loop shape. (a) CFS
on the background color is used for loop detection. (b) An

example of a connection loop before and after removal.
Detecting Characters with a Cross. A unique characteristic of a
cross shape is having four sides; upper, lower, left and right sides.
We observed that drawing an imaginary box around the cross
shape must intersect with the box once from each side, with each
intersection representing one of the cross shape four sides.

 We detect the cross as follows. a) We traverse the image using
the imaginary box, and if each of the four sides of the box
intersects with one and only one foreground colored pixel, then
the box position is labeled as a possible cross shape component.
After that, we shift the box position and continue searching for
other cross shapes, until the entire image is traversed. b) We filter
through all the possible cross shapes, and we keep only those
satisfying these conditions. First, the position of the cross shape is
in the upper side of its foreground component. Second, all the
foreground pixels covered by the box area are connected with
each other (we used CFS to verify this condition), this condition
is needed as all the pixels in a valid cross shape are connected
with each other Finally, the cross shape must not overlap
vertically with a loop shape. In Figure 7, the red box indicates the
imaginary box and thus the location of a cross shape.

Figure 7. Detecting characters with a cross shape (the

detected cross shapes are highlighted by a red box).
S Vertical Histogram. The unique shape characteristic of the
character “s” is that it contains three vertically overlapping
strokes in its shape. We detect it as follows. First, we map the
image against a vertical histogram that represents the total number
of foreground pixels in each column. Then we ignore all parts of
the histogram that intersects with other character shapes (this is
done to insure no false detection of characters having three
vertically overlapping strokes, such as “a” or “e”). Second, we
search the histogram for consecutive occurrence of columns with
the value of three or more pixels in each column; we call such
occurrence of columns as the “s-span”. Finally, if an “s-span” has
a width larger that 25 pixels (a threshold for the character “s”
minimum width; i.e., the component under analysis has a width
large enough to contain an “s”), then we use the s-span’s left-most
and right-most columns as a reference to draw a bounding box
around the characters “s”. Figure 8 shows the histogram
(magnified by a factor of 4) and the “s” character bounding box.

Figure 8. S Vertical Histogram. Identification of the

character “s” location, as highlighted by a bounding box.

3.3 Segmentation
In this step, we cut out characters that have a shape pattern
detected in the previous step. We use the examples used in the
previous section to show how we separate ‘i’ from ‘sp’, and how
to split ‘sp’, ‘ut’ and ‘ws’ – four examples illustrate how to
segment a character with a dot, a character with a loop, a
character with a cross, and a character with “s” shape,
respectively.

We first convert the detected shape pattern’s color to white (i.e.
the image background color). This effectively hides the detected
shape, and breaks connected characters into separate components,
as shown in Figure 9. Note: for a character with dot, the detected
shape includes the dot, and the vertical part of the body.

All visible components in Figure 9 can be classified into two
types. The first type belongs to only one character, and we call
them private components. For example, in Figure 9(a), the
component in green color and the component in red were
previously both connected to the body of the character “i”. They
belong to this character only, and therefore are private
components. The second type of components occurs as the result
of connected characters; these components do not belong to a
single character alone, and we call them shared components. In
Figure 9 (a), the component in brown color is a shared
component, since it consists of a stroke that was previously
connecting characters ‘p’ and ‘i’.

Similarly, in Figure 9(b), private components are the blue one and
the red one, and the green component is a shared one. In Figure
9(c), the green component is a shared one, and all others are
private components. In Figure 9(d), the blue component is a
shared one, and all others are private components.

It is simple to automatically differentiate between private and
shared components: a shared component connects with other
characters, and therefore has a much larger pixel count than a
private component does.

(a) (b)

(c) (d)

Figure 9. Locating shared and private components.
As such, the task for segmenting a detected character becomes
identifying where to cut in shared components. The properly cut
shared components, a detected shape pattern and its associated
private components will form a complete character.

relatively large pixel count if vertically overlapping and in close
proximity with character loop(s). We developed heuristics based
on the pixel count and the relative position of loops to detect and
remove connection loops. Figure 6 (b) shows a different example
containing a “connection loop” before and after removal.

(a)

(b)

Figure 6. Detection of characters with a loop shape. (a) CFS
on the background color is used for loop detection. (b) An

example of a connection loop before and after removal.
Detecting Characters with a Cross. A unique characteristic of a
cross shape is having four sides; upper, lower, left and right sides.
We observed that drawing an imaginary box around the cross
shape must intersect with the box once from each side, with each
intersection representing one of the cross shape four sides.

 We detect the cross as follows. a) We traverse the image using
the imaginary box, and if each of the four sides of the box
intersects with one and only one foreground colored pixel, then
the box position is labeled as a possible cross shape component.
After that, we shift the box position and continue searching for
other cross shapes, until the entire image is traversed. b) We filter
through all the possible cross shapes, and we keep only those
satisfying these conditions. First, the position of the cross shape is
in the upper side of its foreground component. Second, all the
foreground pixels covered by the box area are connected with
each other (we used CFS to verify this condition), this condition
is needed as all the pixels in a valid cross shape are connected
with each other Finally, the cross shape must not overlap
vertically with a loop shape. In Figure 7, the red box indicates the
imaginary box and thus the location of a cross shape.

Figure 7. Detecting characters with a cross shape (the

detected cross shapes are highlighted by a red box).
S Vertical Histogram. The unique shape characteristic of the
character “s” is that it contains three vertically overlapping
strokes in its shape. We detect it as follows. First, we map the
image against a vertical histogram that represents the total number
of foreground pixels in each column. Then we ignore all parts of
the histogram that intersects with other character shapes (this is
done to insure no false detection of characters having three
vertically overlapping strokes, such as “a” or “e”). Second, we
search the histogram for consecutive occurrence of columns with
the value of three or more pixels in each column; we call such
occurrence of columns as the “s-span”. Finally, if an “s-span” has
a width larger that 25 pixels (a threshold for the character “s”
minimum width; i.e., the component under analysis has a width
large enough to contain an “s”), then we use the s-span’s left-most
and right-most columns as a reference to draw a bounding box
around the characters “s”. Figure 8 shows the histogram
(magnified by a factor of 4) and the “s” character bounding box.

Figure 8. S Vertical Histogram. Identification of the

character “s” location, as highlighted by a bounding box.

3.3 Segmentation
In this step, we cut out characters that have a shape pattern
detected in the previous step. We use the examples used in the
previous section to show how we separate ‘i’ from ‘sp’, and how
to split ‘sp’, ‘ut’ and ‘ws’ – four examples illustrate how to
segment a character with a dot, a character with a loop, a
character with a cross, and a character with “s” shape,
respectively.

We first convert the detected shape pattern’s color to white (i.e.
the image background color). This effectively hides the detected
shape, and breaks connected characters into separate components,
as shown in Figure 9. Note: for a character with dot, the detected
shape includes the dot, and the vertical part of the body.

All visible components in Figure 9 can be classified into two
types. The first type belongs to only one character, and we call
them private components. For example, in Figure 9(a), the
component in green color and the component in red were
previously both connected to the body of the character “i”. They
belong to this character only, and therefore are private
components. The second type of components occurs as the result
of connected characters; these components do not belong to a
single character alone, and we call them shared components. In
Figure 9 (a), the component in brown color is a shared
component, since it consists of a stroke that was previously
connecting characters ‘p’ and ‘i’.

Similarly, in Figure 9(b), private components are the blue one and
the red one, and the green component is a shared one. In Figure
9(c), the green component is a shared one, and all others are
private components. In Figure 9(d), the blue component is a
shared one, and all others are private components.

It is simple to automatically differentiate between private and
shared components: a shared component connects with other
characters, and therefore has a much larger pixel count than a
private component does.

(a) (b)

(c) (d)

Figure 9. Locating shared and private components.
As such, the task for segmenting a detected character becomes
identifying where to cut in shared components. The properly cut
shared components, a detected shape pattern and its associated
private components will form a complete character.

Identifying Cutting Points. The location of a cutting point on a
shared component is dependent on the nature of the character,
which the component connects to.

For a shared component that connects with a character with a dot
shape, the cutting point is close to the character in terms of
horizontal distance. The reason is that such a character has a small
width, and if we cut far away from the character, we will likely
destroy its connect character(s). The cutting point we choose will
make sure that we preserve both the dot character and its adjacent
characters. The identification of cutting points for shared
components that connect with a character with a cross pattern is
similar, and for the same reason.

For a shared component that connects with a character with a
loop, the cutting point is farther way from the character in terms
of horizontal distance. The reason is this: a loop shape typically is
inside a character; if we cut too close to the character, we will
destroy it. Similarly, for a shared component that connects with
an ‘s’ shape, we cut at a point that is far away from the character
with ‘s” shape.

Figure 10 gives an example of identifying the cutting point. Since
the shared component, connecting characters “u” and “t”, is
positioned to the left of the cross shape and starts from the lower
side of the cross shape, the cutting point is estimated at 15 pixels
in horizontal distance to the left of the cross shape. The arrow
indicates a distance of 15 pixels, and a red circle highlights the
cutting point.

Figure 10. Locating a cutting point in a shared component.

Cutting. Cutting points are identified in a thinned image, but our
real cutting is done in the image’s un-thinned version. We could
do the segmentation in the thinned image. However, cutting the
non-thin version has advantages. First, we can reuse the rate of
recognizing individual characters in Google CAPTCHA reported
in the literature for estimating our overall success (segmentation
and then recognition) of breaking the Google scheme. It is useful
future work to check whether recognizing thinned individual
characters works better than recognizing un-thinned ones, but not
important for this paper. Second, the un-thinned version preserves
original character shapes, which as discussed later allow further
improvements to our attack.

We first copy cutting points from a thinned image to its un-
thinned version. This is done, as illustrated in Figure 11, by
superimposing two images, since they have the exact same width
and height. Then, we draw an imaginary box (6x15 pixels in
dimension, illustrated in red in Figure 11) around the cutting
point, and within this box, we try to find the shortest path that can
cut through a character stroke. If such path exists, then we cut
through it, else we cut vertically at the location of the cutting
point.

The shortest cutting path exists in the case shown in Figure 11,
and is identified as follows. The green color represents a set of
points S1, located in the upper side of the imaginary box. The
blue color represents a set of points S2, located in the lower side

of the box. To find the shortest path that can cut through the
character stroke shared by “u” and “t”, we compute the distance
between every point in S1 to every point in S2. The points with
the shortest distance are then used to cut through the character
stroke. In Figure 11, both of the upper and the lowers sides of the
imaginary box extended outside the area of the character stroke.
But, in some cases, the upper side, the lower side, or both upper
and lower sides of the imaginary box remains inside the character
stroke. In such cases, the character stroke is cut vertically at the
position of the cutting point.

Figure 12 shows the output of cutting the shared components in
the non-thin version of the characters, where each segmented
character is highlighted with a distinct color.

Figure 11. An example of segmenting a shared components.

3.4 Tuning
The order of character detection and segmentation is about
which shape character is to be detected and segmented first (when
multiple options exists), and this has an impact on our attack’s
success rate. The optimal order we found is to first process (detect
and segment) characters with a dot, then characters with a loop,
next characters with a cross, and finally “s”-shape characters.

This is mainly a decreasing ranking order in terms of false
positive rates introduced by each method. For instance, the dot
shape has a unique shape, and its detection method has only 1%
false positive. As a result, its order was first.

On the other hand, the arrangement of characters and their
connection patterns resembled character shapes in some cases.
For example, we found that some of the connection patterns
between characters resembled a cross shape, leading to a false
detection of the cross shape. For example, the connection pattern
between the characters “e” and “s” in Figure 12. In addition,
horizontally overlapping italic font in connected characters could
be confused with the character “s”. For this, we decided to use the
loop method second in order, as the segmentation of loop
character lowers the chance of false “cross” and “s” shape
patterns.

Since the “s” detection method is restricted to the analysis of wide
characters only, we decided to use it last after the cross detection
method, thus lowering the chances of confusing horizontally
overlapping connected characters with the “s” shape.

Among our segmentation results in Figure 12, in “perspi”, the
connection between “pi” was segmented first using the dot
segmentation method, followed by the segmentation of the
connection between “er” and “sp” using the loop
detection/segmentation algorithm; in “phautta”, the connection

between “ha”, “au” and “ta” was segmented first using the loop
segmentation method as no dots were detected in this case and the
connection between “ut” was segmented using the cross
segmentation method; in “cowsi”, the connection between “co”
was segmented using the loop segmentation method first,
followed by the segmentation of the connection between “ws”,
and finally, in “reses”, only the loop segmentation method was
used.

Figure 12. Segmentation results of the Google scheme: each

segmented character is highlighted with a distinct color.
Up-sampling has an impact on both our attack’s success rate and
speed. We tested with different up-sampling ratios such as 1, 2, 3
and 4. The higher the up-sampling ratio is, the higher success rate
our segmentation attack can achieve, and the slower the attack is.
The explanation is simple: up-sampling enlarges an image, and
therefore it slows down the attack; up-sampling also smoothes
characters and their connection areas, reducing segmentation
errors. We identify that the optimal up-sampling ratio is 3, which
achieved a reasonably good balance between the attack success
and speed. Measurements reported in this paper are based on this
configuration.

3.5 Attack Success and Speed
Our attack achieved a success rate of 68% on a sample-set of 100
challenges. Following a common practice in the areas of computer
vision and machine learning, we tested our attack on 400
independent samples from a test-set and achieved a success rate of
62%2. We did not use any of the test-set samples in our attack
design, as the test-set aims to generalize our attack on
independent samples. That is the attack is generic enough to all
challenges generated by this version of Google CAPTCHA.
Given that the state-of-the-art can achieve a success rate of 95%
in recognizing individual segmented characters [6], and an
average number of characters in Google CAPTCHA of 5.5
characters, our attack implies that it could lead to an overall
(segmentation and then recognition) success rate of 46.75% (62 *
0.95^5.5) for breaking this Google CAPTCHA.

We implemented our attack using Java, and tested it on a desktop
computer with a 2.4 GHz Intel Core 4 CPU and 4 GB RAM. We
ran the attack 10 times on both the sample and test sets to
compute its speed and on average our attack took 7 seconds to
segment a challenge.

3.6 Further Enhancements
It is important to note that when more connection patterns
between adjacent characters are considered, we can significantly
improve our attack’s success. We designed an algorithm to detect
an interesting connection pattern between characters such as “cy”,
“oo”, “bc” and “bd”. This connection pattern is called “double v”,
as it (shown in Figure 13(a)) resembles a “v” shape in the upper
side, and a reversed “v” shape in the lower side.

2 Our sample set was collected in June 2009, and the test set in

August 2010; both dates were random choices.

Our algorithm work as follows: First, the contour of suspicious
components (i.e., components with a width that could
accommodate more than one character) is mapped to a coordinate
plane. We analyze the plane points from left to right. To detect a
“v” shape, we search for consecutive points that have an
increasing Y value and then a decreasing Y value – The higher
the value of Y, the lower the point position in the image. To
detect a “reverse v” shape, we search for consecutive points that
have a decreasing Y value and then an increasing Y value. Then,
we compare the position of the “v” and the “reversed v” shapes,
and a double v pattern is detected if any of them overlaps
vertically.

To segment the “double v” connection, we simply cut from the
lowest point in the “v” shape, to the highest point in the “reversed
v” shape. Figure 13(b) shows a segmentation result.

(a) (b)

Figure 13. Google CAPTCHA: (a) A “double v” connection
pattern. (b) Segmenting result.

With this “double v” enhancement, our attack has achieved a
segmentation success rate of 74% in the sample-set, and 69% on
the test-set. This is so far the most successful attack on a usable
version of Google CAPTCHA.

4. THE ROBUSTNESS OF RECAPTCHA
ReCAPTCHA is similar to Google CAPTCHA since both the
schemes deploy the “crowding characters” mechanism and both
lack defenses against attacks exploiting character shape patterns
and connection patterns. In addition to its functionality as a
human verification tool, ReCAPTCHA is utilized as a crowd-
sourcing system for digitizing books, i.e., a text “labeling” tool.
As shown in Figure 14, a ReCAPTCHA challenge employs two
text strings where the answer to one of those is known to the
server and thus functions as a CAPTCHA, whereas the answer to
the second one is unknown and it is used for labeling
functionality. The other crucial difference in ReCAPTCHA can
be found in its text challenges in which, unlike Google’s, its
character set includes numbers. Moreover, some of its challenge
strings are dictionary words.

Figure 14. ReCAPTCHA: a challenge sample.
To show that our attack on Google CAPTCHA is applicable to
other schemes, we developed a variant of the attack for
ReCAPTCHA, and it works as follows.

4.1 Preprocessing
In this step we first divide a challenge into two images, each
containing a challenge string. This is done by mapping the
challenge against a vertical histogram representing the total
number of black pixels in each column. Then, we search the
histogram for a column satisfying two conditions: first, it contains
no black pixels and, second, its position along the x-axis is the
closest to the mid value of the image width. We cut through this
column to divide the challenge into two images. Next, each of the
two images is up-sampled by a factor of three and then binarised.

The Robustness of Google CAPTCHAs
Ahmad S El Ahmad, Jeff Yan, Mohamad Tayara

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-segmentation principles

• Use collapsing or lines

• Be careful in the implementation

• Create alternative schemes

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Future

• Generic breaker for weak captchas

• Use higher-order features

• to remove lines

• Breaking collapsed captchas

http://ly.tl/t1
http://ly.tl/t1

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Captcha research
http://elie.im/tag/captcha

Follow-me on Twitter
@elie

Questions ?

http://www.owade.org
http://www.owade.org

