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The world most-popular captchas

•  

[eBay]

[Baidu]

[Captcha.net]

[NIH]

[Wikipedia]

[Digg]

[Blizzard]

[Google]

[Skyrock]

[Recaptcha]

[Authorize]

[CNN]
[Megaupload]

[Reddit]

[Slashdot]
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Focus of this talk

• xw

How to break text captcha and 
 design secure ones
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Based on the break of 13 of the most 
 popular schemes
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Outline

• How to break text-captchas ?

• Evaluating anti-recognition techniques security

• Attacking anti-segmentation techniques

• Real-world captcha security summary

• Decaptcha (our breaker) demo

• Lessons learned
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Breaking captcha

Divide and Conquer approach
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Slashdot captcha
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How to break captchas ?
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Slashdot captcha
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How to break captchas ?
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Anti-recognition techniques
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Anti-recognition techniques

Blurring

Distortion

Rotation

Fonts

Charsets
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SVM learning rate
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Anti-recognition taxonomy
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Anti-recognition taxonomy

Background Confusion

Background confusion

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Background confusion

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Background confusion

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Background confusion

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Lines

Background confusion

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Lines

Background confusion

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Lines

Background confusion

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Lines

Background confusion

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Lines

Collapsing

Background confusion

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Lines

Collapsing

Background confusion

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Lines

Collapsing

Background confusion

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Anti-recognition taxonomy

Background Confusion

Lines

Collapsing

Background confusion

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking World of Warcraft

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking World of Warcraft

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking World of Warcraft

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking World of Warcraft

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking World of Warcraft

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Captcha.net

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Captcha.net

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Captcha.net

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Captcha.net

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Captcha.net

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Wikipedia

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Wikipedia

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Wikipedia

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Wikipedia

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Wikipedia

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Digg

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Digg

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Digg

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Digg

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Digg

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Slashdot

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Slashdot

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Slashdot

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Slashdot

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Slashdot

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking eBay

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking eBay

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking eBay

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking eBay

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking eBay

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Failing to break eBay

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Failing to break eBay

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Failing to break eBay

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Failing to break eBay

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Failing to break eBay

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Baidu

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Baidu

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Baidu

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Baidu

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Baidu

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Breaking Baidu

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Real-world captchas security summary

http://ly.tl/t1
http://ly.tl/t1


Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Overall results
Segmentation rate Solving rate

Authorize 84% 66%

Baidu 98% 5%

Blizzard 75% 70%

Captcha.net 96% 73%

CNN 50% 16%

Digg 86% 20%

eBay 95% 43%

Google 0% 0%

MegaUpload n/a 93%

NIH 87% 72%

Recaptcha 0% 0%

Reddit 71% 42%

Skyrock 30% 2%

Slashdot 52% 35%

Wikipedia 57% 25%
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Learning rate for real schemes
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Building a breaker guidelines

• Immediate visual feedback

• Visual debugging

• Algorithm independence

• Exposing algorithm parameters
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Decaptcha main interface
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Demo time
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Core principles

• Randomize the length

• Randomize the character size

• Wave the captcha
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Anti-recognition principles

• Use anti-recognition as a means of strengthening 
captcha security

• Don’t use a complex charset

• Bad for human (see our research on this)

• Useless for security 
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The Robustness of Google Captchas

• New heuristic to break 
the easy version of 
Google / Recaptcha

• Published online in May 
2011

• Use letters shape as a 
side-channel

• Conclusion reduce your 
charset (not t or s...)

 
 

relatively large pixel count if vertically overlapping and in close 
proximity with character loop(s). We developed heuristics based 
on the pixel count and the relative position of loops to detect and 
remove connection loops. Figure 6 (b) shows a different example 
containing a “connection loop” before and after removal. 

 
(a) 

             
(b) 

Figure 6.  Detection of characters with a loop shape. (a) CFS 
on the background color is used for loop detection. (b) An 

example of a connection loop before and after removal. 
Detecting Characters with a Cross. A unique characteristic of a 
cross shape is having four sides; upper, lower, left and right sides. 
We observed that drawing an imaginary box around the cross 
shape must intersect with the box once from each side, with each 
intersection representing one of the cross shape four sides.  

 We detect the cross as follows.   a) We traverse the image using 
the imaginary box, and if each of the four sides of the box 
intersects with one and only one foreground colored pixel, then 
the box position is labeled as a possible cross shape component. 
After that, we shift the box position and continue searching for 
other cross shapes, until the entire image is traversed.  b) We filter 
through all the possible cross shapes, and we keep only those 
satisfying these conditions. First, the position of the cross shape is 
in the upper side of its foreground component. Second, all the 
foreground pixels covered by the box area are connected with 
each other (we used CFS to verify this condition), this condition 
is needed as all the pixels in a valid cross shape are connected 
with each other  Finally, the cross shape must not overlap 
vertically with a loop shape. In Figure 7, the red box indicates the 
imaginary box and thus the location of a cross shape. 

 
Figure 7.  Detecting characters with a cross shape (the 

detected cross shapes are highlighted by a red box). 
S Vertical Histogram. The unique shape characteristic of the 
character “s” is that it contains three vertically overlapping 
strokes in its shape. We detect it as follows.  First, we map the 
image against a vertical histogram that represents the total number 
of foreground pixels in each column. Then we ignore all parts of 
the histogram that intersects with other character shapes (this is 
done to insure no false detection of characters having three 
vertically overlapping strokes, such as “a” or “e”). Second, we 
search the histogram for consecutive occurrence of columns with 
the value of three or more pixels in each column; we call such 
occurrence of columns as the “s-span”. Finally,  if an “s-span” has 
a width larger that 25 pixels (a threshold for the character “s” 
minimum width; i.e., the component under analysis has a width 
large enough to contain an “s”), then we use the s-span’s left-most 
and right-most columns as a reference to draw a bounding box 
around the characters “s”. Figure 8 shows the histogram 
(magnified by a factor of 4) and the “s” character bounding box.  

 
Figure 8.  S Vertical Histogram. Identification of the 

character “s” location, as highlighted by a bounding box. 

3.3 Segmentation  
In this step, we cut out characters that have a shape pattern 
detected in the previous step. We use the examples used in the 
previous section to show how we separate ‘i’ from ‘sp’, and how 
to split ‘sp’, ‘ut’ and ‘ws’ – four examples illustrate how to 
segment a character with a dot, a character with a loop, a 
character with a cross, and a character with “s” shape, 
respectively. 

We first convert the detected shape pattern’s color to white (i.e. 
the image background color). This effectively hides the detected 
shape, and breaks connected characters into separate components, 
as shown in Figure 9. Note: for a character with dot, the detected 
shape includes the dot, and the vertical part of the body.  

All visible components in Figure 9 can be classified into two 
types. The first type belongs to only one character, and we call 
them private components. For example, in Figure 9(a), the 
component in green color and the component in red were 
previously both connected to the body of the character “i”. They 
belong to this character only, and therefore are private 
components. The second type of components occurs as the result 
of connected characters; these components do not belong to a 
single character alone, and we call them shared components. In 
Figure 9 (a), the component in brown color is a shared 
component, since it consists of a stroke that was previously 
connecting characters ‘p’ and ‘i’. 

Similarly, in Figure 9(b), private components are the blue one and 
the red one, and the green component is a shared one. In Figure 
9(c), the green component is a shared one, and all others are 
private components. In Figure 9(d), the blue component is a 
shared one, and all others are private components. 

It is simple to automatically differentiate between private and 
shared components: a shared component connects with other 
characters, and therefore has a much larger pixel count than a 
private component does.  

 
(a)      (b) 

 
(c)      (d) 

Figure 9.  Locating shared and private components.  
As such, the task for segmenting a detected character becomes 
identifying where to cut in shared components. The properly cut 
shared components, a detected shape pattern and its associated 
private components will form a complete character. 
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Identifying Cutting Points. The location of a cutting point on a 
shared component is dependent on the nature of the character, 
which the component connects to.  

For a shared component that connects with a character with a dot 
shape, the cutting point is close to the character in terms of 
horizontal distance. The reason is that such a character has a small 
width, and if we cut far away from the character, we will likely 
destroy its connect character(s). The cutting point we choose will 
make sure that we preserve both the dot character and its adjacent 
characters. The identification of cutting points for shared 
components that connect with a character with a cross pattern is 
similar, and for the same reason.  

For a shared component that connects with a character with a 
loop, the cutting point is farther way from the character in terms 
of horizontal distance. The reason is this: a loop shape typically is 
inside a character; if we cut too close to the character, we will 
destroy it. Similarly, for a shared component that connects with 
an ‘s’ shape, we cut at a point that is far away from the character 
with ‘s” shape.  

Figure 10 gives an example of identifying the cutting point. Since 
the shared component, connecting characters “u” and “t”, is 
positioned to the left of the cross shape and starts from the lower 
side of the cross shape, the cutting point is estimated at 15 pixels 
in horizontal distance to the left of the cross shape. The arrow 
indicates a distance of 15 pixels, and a red circle highlights the 
cutting point. 

 
Figure 10.  Locating a cutting point in a shared component. 

Cutting. Cutting points are identified in a thinned image, but our 
real cutting is done in the image’s un-thinned version. We could 
do the segmentation in the thinned image. However, cutting the 
non-thin version has advantages. First, we can reuse the rate of 
recognizing individual characters in Google CAPTCHA reported 
in the literature for estimating our overall success (segmentation 
and then recognition) of breaking the Google scheme. It is useful 
future work to check whether recognizing thinned individual 
characters works better than recognizing un-thinned ones, but not 
important for this paper. Second, the un-thinned version preserves 
original character shapes, which as discussed later allow further 
improvements to our attack. 

We first copy cutting points from a thinned image to its un-
thinned version. This is done, as illustrated in Figure 11, by 
superimposing two images, since they have the exact same width 
and height. Then, we draw an imaginary box (6x15 pixels in 
dimension, illustrated in red in Figure 11) around the cutting 
point, and within this box, we try to find the shortest path that can 
cut through a character stroke. If such path exists, then we cut 
through it, else we cut vertically at the location of the cutting 
point.  

The shortest cutting path exists in the case shown in Figure 11, 
and is identified as follows. The green color represents a set of 
points S1, located in the upper side of the imaginary box. The 
blue color represents a set of points S2, located in the lower side 

of the box. To find the shortest path that can cut through the 
character stroke shared by “u” and “t”, we compute the distance 
between every point in S1 to every point in S2. The points with 
the shortest distance are then used to cut through the character 
stroke. In Figure 11, both of the upper and the lowers sides of the 
imaginary box extended outside the area of the character stroke. 
But, in some cases, the upper side, the lower side, or both upper 
and lower sides of the imaginary box remains inside the character 
stroke. In such cases, the character stroke is cut vertically at the 
position of the cutting point.  

Figure 12 shows the output of cutting the shared components in 
the non-thin version of the characters, where each segmented 
character is highlighted with a distinct color.  

 

Figure 11.  An example of segmenting a shared components.  

3.4 Tuning 
The order of character detection and segmentation is about 
which shape character is to be detected and segmented first (when 
multiple options exists), and this has an impact on our attack’s 
success rate. The optimal order we found is to first process (detect 
and segment) characters with a dot, then characters with a loop, 
next characters with a cross, and finally “s”-shape characters.  

This is mainly a decreasing ranking order in terms of false 
positive rates introduced by each method. For instance, the dot 
shape has a unique shape, and its detection method has only 1% 
false positive. As a result, its order was first.  

On the other hand, the arrangement of characters and their 
connection patterns resembled character shapes in some cases. 
For example, we found that some of the connection patterns 
between characters resembled a cross shape, leading to a false 
detection of the cross shape. For example, the connection pattern 
between the characters “e” and “s” in Figure 12. In addition, 
horizontally overlapping italic font in connected characters could 
be confused with the character “s”. For this, we decided to use the 
loop method second in order, as the segmentation of loop 
character lowers the chance of false “cross” and “s” shape 
patterns.  

Since the “s” detection method is restricted to the analysis of wide 
characters only, we decided to use it last after the cross detection 
method, thus lowering the chances of confusing horizontally 
overlapping connected characters with the “s” shape. 

Among our segmentation results in Figure 12, in “perspi”, the 
connection between “pi” was segmented first using the dot 
segmentation method, followed by the segmentation of the 
connection between “er” and “sp” using the loop 
detection/segmentation algorithm; in “phautta”, the connection 

 
 

between “ha”, “au” and “ta” was segmented first using the loop 
segmentation method as no dots were detected in this case and the 
connection between “ut” was segmented using the cross 
segmentation method; in “cowsi”, the connection between “co” 
was segmented using the loop segmentation method first, 
followed by the segmentation of the connection between “ws”, 
and finally, in “reses”, only the loop segmentation method was 
used. 

  

   
Figure 12.  Segmentation results of the Google scheme: each 

segmented character is highlighted with a distinct color. 
Up-sampling has an impact on both our attack’s success rate and 
speed. We tested with different up-sampling ratios such as 1, 2, 3 
and 4. The higher the up-sampling ratio is, the higher success rate 
our segmentation attack can achieve, and the slower the attack is. 
The explanation is simple: up-sampling enlarges an image, and 
therefore it slows down the attack; up-sampling also smoothes 
characters and their connection areas, reducing segmentation 
errors. We identify that the optimal up-sampling ratio is 3, which 
achieved a reasonably good balance between the attack success 
and speed. Measurements reported in this paper are based on this 
configuration.  

3.5 Attack Success and Speed 
Our attack achieved a success rate of 68% on a sample-set of 100 
challenges. Following a common practice in the areas of computer 
vision and machine learning, we tested our attack on 400 
independent samples from a test-set and achieved a success rate of 
62%2. We did not use any of the test-set samples in our attack 
design, as the test-set aims to generalize our attack on 
independent samples. That is the attack is generic enough to all 
challenges generated by this version of Google CAPTCHA. 
Given that the state-of-the-art can achieve a success rate of 95% 
in recognizing individual segmented characters [6], and an 
average number of characters in Google CAPTCHA of 5.5 
characters, our attack implies that it could lead to an overall 
(segmentation and then recognition) success rate of 46.75% (62 * 
0.95^5.5) for breaking this Google CAPTCHA. 

We implemented our attack using Java, and tested it on a desktop 
computer with a 2.4 GHz Intel Core 4 CPU and 4 GB RAM. We 
ran the attack 10 times on both the sample and test sets to 
compute its speed and on average our attack took 7 seconds to 
segment a challenge.   

3.6 Further Enhancements 
It is important to note that when more connection patterns 
between adjacent characters are considered, we can significantly 
improve our attack’s success. We designed an algorithm to detect 
an interesting connection pattern between characters such as “cy”, 
“oo”, “bc” and “bd”. This connection pattern is called “double v”, 
as it (shown in Figure 13(a)) resembles a “v” shape in the upper 
side, and a reversed “v” shape in the lower side.   
                                                                 
2 Our sample set was collected in June 2009, and the test set in 

August 2010; both dates were random choices. 

Our algorithm work as follows: First, the contour of suspicious 
components (i.e., components with a width that could 
accommodate more than one character) is mapped to a coordinate 
plane. We analyze the plane points from left to right. To detect a 
“v” shape, we search for consecutive points that have an 
increasing Y value and then a decreasing Y value – The higher 
the value of Y, the lower the point position in the image. To 
detect a “reverse v” shape, we search for consecutive points that 
have a decreasing Y value and then an increasing Y value. Then, 
we compare the position of the “v” and the “reversed v” shapes, 
and a double v pattern is detected if any of them overlaps 
vertically.  

To segment the “double v” connection, we simply cut from the 
lowest point in the “v” shape, to the highest point in the “reversed 
v” shape. Figure 13(b) shows a segmentation result. 

  
(a)       (b) 

Figure 13.  Google CAPTCHA: (a) A “double v” connection 
pattern. (b) Segmenting result.  

With this “double v” enhancement, our attack has achieved a 
segmentation success rate of 74% in the sample-set, and 69% on 
the test-set. This is so far the most successful attack on a usable 
version of Google CAPTCHA. 

4. THE ROBUSTNESS OF RECAPTCHA 
ReCAPTCHA is similar to Google CAPTCHA since both the 
schemes deploy the “crowding characters” mechanism and both 
lack defenses against attacks exploiting character shape patterns 
and connection patterns.  In addition to its functionality as a 
human verification tool, ReCAPTCHA is utilized as a crowd-
sourcing system for digitizing books, i.e., a text “labeling” tool. 
As shown in Figure 14, a ReCAPTCHA challenge employs two 
text strings where the answer to one of those is known to the 
server and thus functions as a CAPTCHA, whereas the answer to 
the second one is unknown and it is used for labeling 
functionality. The other crucial difference in ReCAPTCHA can 
be found in its text challenges in which, unlike Google’s, its 
character set includes numbers. Moreover, some of its challenge 
strings are dictionary words. 

 

Figure 14.  ReCAPTCHA: a challenge sample.  
To show that our attack on Google CAPTCHA is applicable to 
other schemes, we developed a variant of the attack for 
ReCAPTCHA, and it works as follows.  

4.1 Preprocessing 
In this step we first divide a challenge into two images, each 
containing a challenge string. This is done by mapping the 
challenge against a vertical histogram representing the total 
number of black pixels in each column. Then, we search the 
histogram for a column satisfying two conditions: first, it contains 
no black pixels and, second, its position along the x-axis is the 
closest to the mid value of the image width. We cut through this 
column to divide the challenge into two images.  Next, each of the 
two images is up-sampled by a factor of three and then binarised.  
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Anti-segmentation principles

• Use collapsing or lines

• Be careful in the implementation 

• Create alternative schemes
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Future

• Generic breaker for weak captchas

• Use higher-order features 

• to remove lines

• Breaking collapsed captchas
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