
\

The End is Nigh
Generic Solving of Text-based
Elie Bursztein, Jonathan Aigrain, Angelika Mosciki,

John Mitchell

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Real world
Captchas

Pre-processing Segmentation Post-segmentation Recognition Post-processing

Image Matrix Segments matrices Segments matrices Potential answer

Final answerCaptcha

Original Pre-processing Segmentation Post-segmentation

425A
Recognition

Figure 2: The segment then recognize approach illustrated

Over the last decade, it has become well-
established [12, 10] that a captcha’s ability to withstand
automated solving lies in the difficulty of segmenting the
image into individual characters rather than recognizing
the characters themselves. A seminal work from
2005 demonstrated that machine learning algorithms
consistently outperform humans for single character
recognition [12]. Thus the innovation in automated
captcha solving shifted from optical character recogni-
tion (OCR) to solving computer vision problems such as
object occlusion in order to segment characters. To date,
no general algorithm for character segmentation is known.

Previous work related to automated captcha solving
falls roughly into two categories: The first type of attack
uses side-channel information unrelated to the distortion
itself, e.g., dictionary attacks [6, 4]. We do not dwell
on this type of attack because it is usually trivial for the
defender to patch, and because the goal of this work is to
treat captchas in a generic manner.

The second type of attack focuses on finding weak-
nesses in the distortion algorithms of particular captcha
schemes. One example of a precisely tuned segmentation
algorithm is [15], where the authors used a complex
image preprocessing phase that relies on character
alignment, morphological segmentation with three-color
bar character encoding and heuristic recognition to break
reCaptcha 2011. While it was very effective against
reCaptcha 2011, it does not generalize to other captcha
schemes that use similar distortion techniques. Similarly
in 2013, a group or researchers examined hollow captcha
specifically and were able to solve all of them using an
extended segment then recognize approach that involves
9 consecutive steps [21]. Our single step approach yields
results that are 4.22% more accurate on the Baidu 2013
scheme. We compare in depth our results with previous
work in Section 7.

To date, research in captcha solving has followed the
familiar exploit-patch cycle where the attacker finds a
flaw in a particular anti-segmentation technique, and the
defender patches it or moves on to a new one. The limita-
tion of the segment then recognize approach has been the
attacker’s ability to find new flaws. As we will show in our
evaluation (section 7), our work overcomes this limitation
by segmenting and recognizing the captcha simultane-
ously, thus removing the need for manually discovered
heuristics to segment captchas.

4 Dataset

Following the methodology of [10], we created a corpus
of real-world captchas to evaluate the effectiveness of our
algorithm. We focused on unbroken real-world captcha
schemes, and ended up creating our corpus from the
schemes depicted in Figure 3.

Baidu (2011)

Baidu (2013)

eBay

ReCaptcha (2011)

ReCaptcha (2013)

Wikipedia

Yahoo

CNN

Figure 3: Examples of the captchas of the schemes we
evaluated

3

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Outline

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Outline

Old approach: segment then recognize

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Outline

Old approach: segment then recognize

Our new approach: single machine learning step

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Outline

Old approach: segment then recognize

Our new approach: single machine learning step

Evaluation: efficiency on real world captchas

https://www.elie.net/tag/captcha

\

Segment then recognize

How to break captchas the old way

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Think lego

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Slashdot captcha

The segment then recognize approach

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Preprocessing

The segment then recognize approach

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Preprocessing

The segment then recognize approach

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Preprocessing

Segmentation

The segment then recognize approach

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Preprocessing

Segmentation

The segment then recognize approach

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Preprocessing

Segmentation

Post-
segmentation

The segment then recognize approach

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Preprocessing

Segmentation

Post-
segmentation

The segment then recognize approach

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Preprocessing

Segmentation

Post-
segmentation

Recognition

The segment then recognize approach

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Preprocessing

Segmentation

Post-
segmentation

Recognition f a e t e s t

The segment then recognize approach

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Preprocessing

Segmentation

Post-
segmentation

Recognition f a e t e s t

Post-recognition

The segment then recognize approach

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Preprocessing

Segmentation

Post-
segmentation

Recognition f a e t e s t

f a s t e s tPost-recognition

The segment then recognize approach

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

How about
collapsing?

Pre-processing Segmentation Post-segmentation Recognition Post-processing

Image Matrix Segments matrices Segments matrices Potential answer

Final answerCaptcha

Original Pre-processing Segmentation Post-segmentation

425A
Recognition

Figure 2: The segment then recognize approach illustrated

Over the last decade, it has become well-
established [12, 10] that a captcha’s ability to withstand
automated solving lies in the difficulty of segmenting the
image into individual characters rather than recognizing
the characters themselves. A seminal work from
2005 demonstrated that machine learning algorithms
consistently outperform humans for single character
recognition [12]. Thus the innovation in automated
captcha solving shifted from optical character recogni-
tion (OCR) to solving computer vision problems such as
object occlusion in order to segment characters. To date,
no general algorithm for character segmentation is known.

Previous work related to automated captcha solving
falls roughly into two categories: The first type of attack
uses side-channel information unrelated to the distortion
itself, e.g., dictionary attacks [6, 4]. We do not dwell
on this type of attack because it is usually trivial for the
defender to patch, and because the goal of this work is to
treat captchas in a generic manner.

The second type of attack focuses on finding weak-
nesses in the distortion algorithms of particular captcha
schemes. One example of a precisely tuned segmentation
algorithm is [15], where the authors used a complex
image preprocessing phase that relies on character
alignment, morphological segmentation with three-color
bar character encoding and heuristic recognition to break
reCaptcha 2011. While it was very effective against
reCaptcha 2011, it does not generalize to other captcha
schemes that use similar distortion techniques. Similarly
in 2013, a group or researchers examined hollow captcha
specifically and were able to solve all of them using an
extended segment then recognize approach that involves
9 consecutive steps [21]. Our single step approach yields
results that are 4.22% more accurate on the Baidu 2013
scheme. We compare in depth our results with previous
work in Section 7.

To date, research in captcha solving has followed the
familiar exploit-patch cycle where the attacker finds a
flaw in a particular anti-segmentation technique, and the
defender patches it or moves on to a new one. The limita-
tion of the segment then recognize approach has been the
attacker’s ability to find new flaws. As we will show in our
evaluation (section 7), our work overcomes this limitation
by segmenting and recognizing the captcha simultane-
ously, thus removing the need for manually discovered
heuristics to segment captchas.

4 Dataset

Following the methodology of [10], we created a corpus
of real-world captchas to evaluate the effectiveness of our
algorithm. We focused on unbroken real-world captcha
schemes, and ended up creating our corpus from the
schemes depicted in Figure 3.

Baidu (2011)

Baidu (2013)

eBay

ReCaptcha (2011)

ReCaptcha (2013)

Wikipedia

Yahoo

CNN

Figure 3: Examples of the captchas of the schemes we
evaluated

3

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

 ad hoc/complicated
heuristics

relatively large pixel count if vertically overlapping and in close
proximity with character loop(s). We developed heuristics based
on the pixel count and the relative position of loops to detect and
remove connection loops. Figure 6 (b) shows a different example
containing a “connection loop” before and after removal.

(a)

(b)

Figure 6. Detection of characters with a loop shape. (a) CFS
on the background color is used for loop detection. (b) An

example of a connection loop before and after removal.
Detecting Characters with a Cross. A unique characteristic of a
cross shape is having four sides; upper, lower, left and right sides.
We observed that drawing an imaginary box around the cross
shape must intersect with the box once from each side, with each
intersection representing one of the cross shape four sides.

 We detect the cross as follows. a) We traverse the image using
the imaginary box, and if each of the four sides of the box
intersects with one and only one foreground colored pixel, then
the box position is labeled as a possible cross shape component.
After that, we shift the box position and continue searching for
other cross shapes, until the entire image is traversed. b) We filter
through all the possible cross shapes, and we keep only those
satisfying these conditions. First, the position of the cross shape is
in the upper side of its foreground component. Second, all the
foreground pixels covered by the box area are connected with
each other (we used CFS to verify this condition), this condition
is needed as all the pixels in a valid cross shape are connected
with each other Finally, the cross shape must not overlap
vertically with a loop shape. In Figure 7, the red box indicates the
imaginary box and thus the location of a cross shape.

Figure 7. Detecting characters with a cross shape (the

detected cross shapes are highlighted by a red box).
S Vertical Histogram. The unique shape characteristic of the
character “s” is that it contains three vertically overlapping
strokes in its shape. We detect it as follows. First, we map the
image against a vertical histogram that represents the total number
of foreground pixels in each column. Then we ignore all parts of
the histogram that intersects with other character shapes (this is
done to insure no false detection of characters having three
vertically overlapping strokes, such as “a” or “e”). Second, we
search the histogram for consecutive occurrence of columns with
the value of three or more pixels in each column; we call such
occurrence of columns as the “s-span”. Finally, if an “s-span” has
a width larger that 25 pixels (a threshold for the character “s”
minimum width; i.e., the component under analysis has a width
large enough to contain an “s”), then we use the s-span’s left-most
and right-most columns as a reference to draw a bounding box
around the characters “s”. Figure 8 shows the histogram
(magnified by a factor of 4) and the “s” character bounding box.

Figure 8. S Vertical Histogram. Identification of the

character “s” location, as highlighted by a bounding box.

3.3 Segmentation
In this step, we cut out characters that have a shape pattern
detected in the previous step. We use the examples used in the
previous section to show how we separate ‘i’ from ‘sp’, and how
to split ‘sp’, ‘ut’ and ‘ws’ – four examples illustrate how to
segment a character with a dot, a character with a loop, a
character with a cross, and a character with “s” shape,
respectively.

We first convert the detected shape pattern’s color to white (i.e.
the image background color). This effectively hides the detected
shape, and breaks connected characters into separate components,
as shown in Figure 9. Note: for a character with dot, the detected
shape includes the dot, and the vertical part of the body.

All visible components in Figure 9 can be classified into two
types. The first type belongs to only one character, and we call
them private components. For example, in Figure 9(a), the
component in green color and the component in red were
previously both connected to the body of the character “i”. They
belong to this character only, and therefore are private
components. The second type of components occurs as the result
of connected characters; these components do not belong to a
single character alone, and we call them shared components. In
Figure 9 (a), the component in brown color is a shared
component, since it consists of a stroke that was previously
connecting characters ‘p’ and ‘i’.

Similarly, in Figure 9(b), private components are the blue one and
the red one, and the green component is a shared one. In Figure
9(c), the green component is a shared one, and all others are
private components. In Figure 9(d), the blue component is a
shared one, and all others are private components.

It is simple to automatically differentiate between private and
shared components: a shared component connects with other
characters, and therefore has a much larger pixel count than a
private component does.

(a) (b)

(c) (d)

Figure 9. Locating shared and private components.
As such, the task for segmenting a detected character becomes
identifying where to cut in shared components. The properly cut
shared components, a detected shape pattern and its associated
private components will form a complete character.

relatively large pixel count if vertically overlapping and in close
proximity with character loop(s). We developed heuristics based
on the pixel count and the relative position of loops to detect and
remove connection loops. Figure 6 (b) shows a different example
containing a “connection loop” before and after removal.

(a)

(b)

Figure 6. Detection of characters with a loop shape. (a) CFS
on the background color is used for loop detection. (b) An

example of a connection loop before and after removal.
Detecting Characters with a Cross. A unique characteristic of a
cross shape is having four sides; upper, lower, left and right sides.
We observed that drawing an imaginary box around the cross
shape must intersect with the box once from each side, with each
intersection representing one of the cross shape four sides.

 We detect the cross as follows. a) We traverse the image using
the imaginary box, and if each of the four sides of the box
intersects with one and only one foreground colored pixel, then
the box position is labeled as a possible cross shape component.
After that, we shift the box position and continue searching for
other cross shapes, until the entire image is traversed. b) We filter
through all the possible cross shapes, and we keep only those
satisfying these conditions. First, the position of the cross shape is
in the upper side of its foreground component. Second, all the
foreground pixels covered by the box area are connected with
each other (we used CFS to verify this condition), this condition
is needed as all the pixels in a valid cross shape are connected
with each other Finally, the cross shape must not overlap
vertically with a loop shape. In Figure 7, the red box indicates the
imaginary box and thus the location of a cross shape.

Figure 7. Detecting characters with a cross shape (the

detected cross shapes are highlighted by a red box).
S Vertical Histogram. The unique shape characteristic of the
character “s” is that it contains three vertically overlapping
strokes in its shape. We detect it as follows. First, we map the
image against a vertical histogram that represents the total number
of foreground pixels in each column. Then we ignore all parts of
the histogram that intersects with other character shapes (this is
done to insure no false detection of characters having three
vertically overlapping strokes, such as “a” or “e”). Second, we
search the histogram for consecutive occurrence of columns with
the value of three or more pixels in each column; we call such
occurrence of columns as the “s-span”. Finally, if an “s-span” has
a width larger that 25 pixels (a threshold for the character “s”
minimum width; i.e., the component under analysis has a width
large enough to contain an “s”), then we use the s-span’s left-most
and right-most columns as a reference to draw a bounding box
around the characters “s”. Figure 8 shows the histogram
(magnified by a factor of 4) and the “s” character bounding box.

Figure 8. S Vertical Histogram. Identification of the

character “s” location, as highlighted by a bounding box.

3.3 Segmentation
In this step, we cut out characters that have a shape pattern
detected in the previous step. We use the examples used in the
previous section to show how we separate ‘i’ from ‘sp’, and how
to split ‘sp’, ‘ut’ and ‘ws’ – four examples illustrate how to
segment a character with a dot, a character with a loop, a
character with a cross, and a character with “s” shape,
respectively.

We first convert the detected shape pattern’s color to white (i.e.
the image background color). This effectively hides the detected
shape, and breaks connected characters into separate components,
as shown in Figure 9. Note: for a character with dot, the detected
shape includes the dot, and the vertical part of the body.

All visible components in Figure 9 can be classified into two
types. The first type belongs to only one character, and we call
them private components. For example, in Figure 9(a), the
component in green color and the component in red were
previously both connected to the body of the character “i”. They
belong to this character only, and therefore are private
components. The second type of components occurs as the result
of connected characters; these components do not belong to a
single character alone, and we call them shared components. In
Figure 9 (a), the component in brown color is a shared
component, since it consists of a stroke that was previously
connecting characters ‘p’ and ‘i’.

Similarly, in Figure 9(b), private components are the blue one and
the red one, and the green component is a shared one. In Figure
9(c), the green component is a shared one, and all others are
private components. In Figure 9(d), the blue component is a
shared one, and all others are private components.

It is simple to automatically differentiate between private and
shared components: a shared component connects with other
characters, and therefore has a much larger pixel count than a
private component does.

(a) (b)

(c) (d)

Figure 9. Locating shared and private components.
As such, the task for segmenting a detected character becomes
identifying where to cut in shared components. The properly cut
shared components, a detected shape pattern and its associated
private components will form a complete character.

Identifying Cutting Points. The location of a cutting point on a
shared component is dependent on the nature of the character,
which the component connects to.

For a shared component that connects with a character with a dot
shape, the cutting point is close to the character in terms of
horizontal distance. The reason is that such a character has a small
width, and if we cut far away from the character, we will likely
destroy its connect character(s). The cutting point we choose will
make sure that we preserve both the dot character and its adjacent
characters. The identification of cutting points for shared
components that connect with a character with a cross pattern is
similar, and for the same reason.

For a shared component that connects with a character with a
loop, the cutting point is farther way from the character in terms
of horizontal distance. The reason is this: a loop shape typically is
inside a character; if we cut too close to the character, we will
destroy it. Similarly, for a shared component that connects with
an ‘s’ shape, we cut at a point that is far away from the character
with ‘s” shape.

Figure 10 gives an example of identifying the cutting point. Since
the shared component, connecting characters “u” and “t”, is
positioned to the left of the cross shape and starts from the lower
side of the cross shape, the cutting point is estimated at 15 pixels
in horizontal distance to the left of the cross shape. The arrow
indicates a distance of 15 pixels, and a red circle highlights the
cutting point.

Figure 10. Locating a cutting point in a shared component.

Cutting. Cutting points are identified in a thinned image, but our
real cutting is done in the image’s un-thinned version. We could
do the segmentation in the thinned image. However, cutting the
non-thin version has advantages. First, we can reuse the rate of
recognizing individual characters in Google CAPTCHA reported
in the literature for estimating our overall success (segmentation
and then recognition) of breaking the Google scheme. It is useful
future work to check whether recognizing thinned individual
characters works better than recognizing un-thinned ones, but not
important for this paper. Second, the un-thinned version preserves
original character shapes, which as discussed later allow further
improvements to our attack.

We first copy cutting points from a thinned image to its un-
thinned version. This is done, as illustrated in Figure 11, by
superimposing two images, since they have the exact same width
and height. Then, we draw an imaginary box (6x15 pixels in
dimension, illustrated in red in Figure 11) around the cutting
point, and within this box, we try to find the shortest path that can
cut through a character stroke. If such path exists, then we cut
through it, else we cut vertically at the location of the cutting
point.

The shortest cutting path exists in the case shown in Figure 11,
and is identified as follows. The green color represents a set of
points S1, located in the upper side of the imaginary box. The
blue color represents a set of points S2, located in the lower side

of the box. To find the shortest path that can cut through the
character stroke shared by “u” and “t”, we compute the distance
between every point in S1 to every point in S2. The points with
the shortest distance are then used to cut through the character
stroke. In Figure 11, both of the upper and the lowers sides of the
imaginary box extended outside the area of the character stroke.
But, in some cases, the upper side, the lower side, or both upper
and lower sides of the imaginary box remains inside the character
stroke. In such cases, the character stroke is cut vertically at the
position of the cutting point.

Figure 12 shows the output of cutting the shared components in
the non-thin version of the characters, where each segmented
character is highlighted with a distinct color.

Figure 11. An example of segmenting a shared components.

3.4 Tuning
The order of character detection and segmentation is about
which shape character is to be detected and segmented first (when
multiple options exists), and this has an impact on our attack’s
success rate. The optimal order we found is to first process (detect
and segment) characters with a dot, then characters with a loop,
next characters with a cross, and finally “s”-shape characters.

This is mainly a decreasing ranking order in terms of false
positive rates introduced by each method. For instance, the dot
shape has a unique shape, and its detection method has only 1%
false positive. As a result, its order was first.

On the other hand, the arrangement of characters and their
connection patterns resembled character shapes in some cases.
For example, we found that some of the connection patterns
between characters resembled a cross shape, leading to a false
detection of the cross shape. For example, the connection pattern
between the characters “e” and “s” in Figure 12. In addition,
horizontally overlapping italic font in connected characters could
be confused with the character “s”. For this, we decided to use the
loop method second in order, as the segmentation of loop
character lowers the chance of false “cross” and “s” shape
patterns.

Since the “s” detection method is restricted to the analysis of wide
characters only, we decided to use it last after the cross detection
method, thus lowering the chances of confusing horizontally
overlapping connected characters with the “s” shape.

Among our segmentation results in Figure 12, in “perspi”, the
connection between “pi” was segmented first using the dot
segmentation method, followed by the segmentation of the
connection between “er” and “sp” using the loop
detection/segmentation algorithm; in “phautta”, the connection

between “ha”, “au” and “ta” was segmented first using the loop
segmentation method as no dots were detected in this case and the
connection between “ut” was segmented using the cross
segmentation method; in “cowsi”, the connection between “co”
was segmented using the loop segmentation method first,
followed by the segmentation of the connection between “ws”,
and finally, in “reses”, only the loop segmentation method was
used.

Figure 12. Segmentation results of the Google scheme: each

segmented character is highlighted with a distinct color.
Up-sampling has an impact on both our attack’s success rate and
speed. We tested with different up-sampling ratios such as 1, 2, 3
and 4. The higher the up-sampling ratio is, the higher success rate
our segmentation attack can achieve, and the slower the attack is.
The explanation is simple: up-sampling enlarges an image, and
therefore it slows down the attack; up-sampling also smoothes
characters and their connection areas, reducing segmentation
errors. We identify that the optimal up-sampling ratio is 3, which
achieved a reasonably good balance between the attack success
and speed. Measurements reported in this paper are based on this
configuration.

3.5 Attack Success and Speed
Our attack achieved a success rate of 68% on a sample-set of 100
challenges. Following a common practice in the areas of computer
vision and machine learning, we tested our attack on 400
independent samples from a test-set and achieved a success rate of
62%2. We did not use any of the test-set samples in our attack
design, as the test-set aims to generalize our attack on
independent samples. That is the attack is generic enough to all
challenges generated by this version of Google CAPTCHA.
Given that the state-of-the-art can achieve a success rate of 95%
in recognizing individual segmented characters [6], and an
average number of characters in Google CAPTCHA of 5.5
characters, our attack implies that it could lead to an overall
(segmentation and then recognition) success rate of 46.75% (62 *
0.95^5.5) for breaking this Google CAPTCHA.

We implemented our attack using Java, and tested it on a desktop
computer with a 2.4 GHz Intel Core 4 CPU and 4 GB RAM. We
ran the attack 10 times on both the sample and test sets to
compute its speed and on average our attack took 7 seconds to
segment a challenge.

3.6 Further Enhancements
It is important to note that when more connection patterns
between adjacent characters are considered, we can significantly
improve our attack’s success. We designed an algorithm to detect
an interesting connection pattern between characters such as “cy”,
“oo”, “bc” and “bd”. This connection pattern is called “double v”,
as it (shown in Figure 13(a)) resembles a “v” shape in the upper
side, and a reversed “v” shape in the lower side.

2 Our sample set was collected in June 2009, and the test set in

August 2010; both dates were random choices.

Our algorithm work as follows: First, the contour of suspicious
components (i.e., components with a width that could
accommodate more than one character) is mapped to a coordinate
plane. We analyze the plane points from left to right. To detect a
“v” shape, we search for consecutive points that have an
increasing Y value and then a decreasing Y value – The higher
the value of Y, the lower the point position in the image. To
detect a “reverse v” shape, we search for consecutive points that
have a decreasing Y value and then an increasing Y value. Then,
we compare the position of the “v” and the “reversed v” shapes,
and a double v pattern is detected if any of them overlaps
vertically.

To segment the “double v” connection, we simply cut from the
lowest point in the “v” shape, to the highest point in the “reversed
v” shape. Figure 13(b) shows a segmentation result.

(a) (b)

Figure 13. Google CAPTCHA: (a) A “double v” connection
pattern. (b) Segmenting result.

With this “double v” enhancement, our attack has achieved a
segmentation success rate of 74% in the sample-set, and 69% on
the test-set. This is so far the most successful attack on a usable
version of Google CAPTCHA.

4. THE ROBUSTNESS OF RECAPTCHA
ReCAPTCHA is similar to Google CAPTCHA since both the
schemes deploy the “crowding characters” mechanism and both
lack defenses against attacks exploiting character shape patterns
and connection patterns. In addition to its functionality as a
human verification tool, ReCAPTCHA is utilized as a crowd-
sourcing system for digitizing books, i.e., a text “labeling” tool.
As shown in Figure 14, a ReCAPTCHA challenge employs two
text strings where the answer to one of those is known to the
server and thus functions as a CAPTCHA, whereas the answer to
the second one is unknown and it is used for labeling
functionality. The other crucial difference in ReCAPTCHA can
be found in its text challenges in which, unlike Google’s, its
character set includes numbers. Moreover, some of its challenge
strings are dictionary words.

Figure 14. ReCAPTCHA: a challenge sample.
To show that our attack on Google CAPTCHA is applicable to
other schemes, we developed a variant of the attack for
ReCAPTCHA, and it works as follows.

4.1 Preprocessing
In this step we first divide a challenge into two images, each
containing a challenge string. This is done by mapping the
challenge against a vertical histogram representing the total
number of black pixels in each column. Then, we search the
histogram for a column satisfying two conditions: first, it contains
no black pixels and, second, its position along the x-axis is the
closest to the mid value of the image width. We cut through this
column to divide the challenge into two images. Next, each of the
two images is up-sampled by a factor of three and then binarised.

The Robustness of Google CAPTCHAs
Ahmad S El Ahmad, Jeff Yan, Mohamad Tayara

https://www.elie.net/tag/captcha

Elie Bursztein Captcha (in)security Confidential

I don’t know how to do it (in the general case)

\

Captcha breaking reloaded

When AI over-come human limitations

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

What is wrong with the previous approach?

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

What is wrong with the previous approach?

Segmentation requires to find an invariant to exploit
color, cluster size, number of characters, shape ...

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

What is wrong with the previous approach?

Segmentation requires to find an invariant to exploit
color, cluster size, number of characters, shape ...

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

What is wrong with the previous approach?

Segmentation requires to find an invariant to exploit
color, cluster size, number of characters, shape ...

Captcha breaking is more exploit writing than
machine learning

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Classifiers are extremely accuracy (e.g KNN/SVM)
%

 s
uc

ce
ss

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Trainning set size
10 20 50 100 200 500

09
AZ09
azAZ09
Distortion
3 fonts
5 fonts
Angles

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

If classifiers are that good, why
are we doing pre-processing ?

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

There is no segmentation

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Approach overview

Cut-points detection

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Approach overview

Cut-points detection

Slicer

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Approach overview

Cut-points detection

Slicer

Scorer

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Approach overview

Cut-points detection

Slicer

Scorer

Arbiter

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

New approach

Captcha

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

New approach

Captcha Slicer

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

New approach

Captcha Slicer

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Scorer

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Scorer

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Scorer

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Scorer

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Scorer

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Scorer

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Arbiter

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Arbiter

ilebe

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Arbiter

ilebe

kinedi

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Arbiter

ilebe

kinedi

ilebe

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Arbiter

ilebe

kinedi

ilebe

ilebe

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Improving accuracy using reinforcement learning

ilebe

ikebe

ilabe

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Improving accuracy using reinforcement learning

ilebe

ikebe

ilabe

The classifier guide the learning process and tell
humans when it need help

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Reinforcement illustrated

Ensemble learning, while deceptively simple, is very
robust to noise and leverages the fact that there is not
one but multiple ways to segment an occlusion based
captcha that will yield the correct answer. The Condorcet
theorem [40] implies that combining paths yields better
predictive performance than could be obtained from a
single path in isolation. In our experience, the right voting
approach is critical to the algorithm’s success. While this
approach is accurate, it is also very slow to the point of
being impractical, which is why we discuss trade-offs that
can be applied to make the algorithm orders of magnitude
faster while retaining most of its accuracy in Section 6.

5.2 Reinforcement learning
The traditional way to train a character classifier is to
provide a set of labeled captchas already segmented
and let the classifier learn to recognize each char-
acter from those segments using the labels. This
process assumes that the classifier is given the cor-
rect number of segments - one for each letter in the
captcha. In the segment then recognize approach, this
assumption holds because the segmentation is handled
by a vision algorithm that is not part of the classifier itself.

In our case, this assumption does not hold. Our
algorithm produces a huge number of segments, most of
which are garbage, and many paths in the graph that do
not correspond to valid segmentations at all. To overcome
this, we use a reinforcement learning approach where the
human fills an entirely different role: instead of providing
the classifier with labeled examples of valid segments, the
algorithm asks the human to annotate segments that have
been misclassified, and then learns from the feedback.
The algorithm is able to initiate the learning process
because the first two components of the algorithm (the
cut-point detector and the slicer) are fully unsupervised.

A K E
Needs human judgment

Figure 7: The algorithm asks for feedback when a seg-
ment surrounded by two correctly classified segments is
misclassified

In a nutshell, our reinforcement learning works as fol-
lows: during training, the algorithm processes a set of
labeled captchas and isolates the captchas that were not
successfully recognized. For the failed captchas, the al-
gorithm asks for human feedback when a segment sur-
rounded by two correctly classified segments is misclassi-
fied (see figure 7). In those cases, the algorithm needs the
human expertise because the misclassification could be
due either to improper segmentation, or to bad recognition
and the algorithm is unable to tell them apart by itself.
Examples of improper segmentation and bad recognition
are shown in figure 8. If the error was due to improper
segmentation, the segment is discarded. If the error was
due to a recognition error, the segment is added to the
classifier training set. When all the cases are reviewed,
the algorithm is retrained with the enriched dataset. In
practice, even a single round of reinforcement learning
is enough to significantly improve accuracy, as summa-
rized in table 3. The number of cases requiring manual
intervention was small enough where we performed the
corrections ourselves.

Bad segmentation Bad recognition

4
1
t

4
o
7

:

:

:

:

:

:

Figure 8: Examples of misclassification due to bad seg-
mentation and bad recognition

5.3 Occluding lines
The last fundamental hurdle we needed to overcome to
produce a fully generic algorithm was to deal with occlud-
ing lines. While not as popular as negative kerning, lines
are used by some captcha providers. For example Baidu
2011 (figure 9) uses both lines and negative kerning to
defend against automated solvers.

Without the line class With the line class
Baidu 8.78% 17.27%

Table 1: Impact of adding a line class on the recognition
rate for the Baidu scheme without iterative learning

6

Ensemble learning, while deceptively simple, is very
robust to noise and leverages the fact that there is not
one but multiple ways to segment an occlusion based
captcha that will yield the correct answer. The Condorcet
theorem [40] implies that combining paths yields better
predictive performance than could be obtained from a
single path in isolation. In our experience, the right voting
approach is critical to the algorithm’s success. While this
approach is accurate, it is also very slow to the point of
being impractical, which is why we discuss trade-offs that
can be applied to make the algorithm orders of magnitude
faster while retaining most of its accuracy in Section 6.

5.2 Reinforcement learning
The traditional way to train a character classifier is to
provide a set of labeled captchas already segmented
and let the classifier learn to recognize each char-
acter from those segments using the labels. This
process assumes that the classifier is given the cor-
rect number of segments - one for each letter in the
captcha. In the segment then recognize approach, this
assumption holds because the segmentation is handled
by a vision algorithm that is not part of the classifier itself.

In our case, this assumption does not hold. Our
algorithm produces a huge number of segments, most of
which are garbage, and many paths in the graph that do
not correspond to valid segmentations at all. To overcome
this, we use a reinforcement learning approach where the
human fills an entirely different role: instead of providing
the classifier with labeled examples of valid segments, the
algorithm asks the human to annotate segments that have
been misclassified, and then learns from the feedback.
The algorithm is able to initiate the learning process
because the first two components of the algorithm (the
cut-point detector and the slicer) are fully unsupervised.

A K E
Needs human judgment

Figure 7: The algorithm asks for feedback when a seg-
ment surrounded by two correctly classified segments is
misclassified

In a nutshell, our reinforcement learning works as fol-
lows: during training, the algorithm processes a set of
labeled captchas and isolates the captchas that were not
successfully recognized. For the failed captchas, the al-
gorithm asks for human feedback when a segment sur-
rounded by two correctly classified segments is misclassi-
fied (see figure 7). In those cases, the algorithm needs the
human expertise because the misclassification could be
due either to improper segmentation, or to bad recognition
and the algorithm is unable to tell them apart by itself.
Examples of improper segmentation and bad recognition
are shown in figure 8. If the error was due to improper
segmentation, the segment is discarded. If the error was
due to a recognition error, the segment is added to the
classifier training set. When all the cases are reviewed,
the algorithm is retrained with the enriched dataset. In
practice, even a single round of reinforcement learning
is enough to significantly improve accuracy, as summa-
rized in table 3. The number of cases requiring manual
intervention was small enough where we performed the
corrections ourselves.

Bad segmentation Bad recognition

4
1
t

4
o
7

:

:

:

:

:

:

Figure 8: Examples of misclassification due to bad seg-
mentation and bad recognition

5.3 Occluding lines
The last fundamental hurdle we needed to overcome to
produce a fully generic algorithm was to deal with occlud-
ing lines. While not as popular as negative kerning, lines
are used by some captcha providers. For example Baidu
2011 (figure 9) uses both lines and negative kerning to
defend against automated solvers.

Without the line class With the line class
Baidu 8.78% 17.27%

Table 1: Impact of adding a line class on the recognition
rate for the Baidu scheme without iterative learning

6

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Reinforcement illustrated

Ensemble learning, while deceptively simple, is very
robust to noise and leverages the fact that there is not
one but multiple ways to segment an occlusion based
captcha that will yield the correct answer. The Condorcet
theorem [40] implies that combining paths yields better
predictive performance than could be obtained from a
single path in isolation. In our experience, the right voting
approach is critical to the algorithm’s success. While this
approach is accurate, it is also very slow to the point of
being impractical, which is why we discuss trade-offs that
can be applied to make the algorithm orders of magnitude
faster while retaining most of its accuracy in Section 6.

5.2 Reinforcement learning
The traditional way to train a character classifier is to
provide a set of labeled captchas already segmented
and let the classifier learn to recognize each char-
acter from those segments using the labels. This
process assumes that the classifier is given the cor-
rect number of segments - one for each letter in the
captcha. In the segment then recognize approach, this
assumption holds because the segmentation is handled
by a vision algorithm that is not part of the classifier itself.

In our case, this assumption does not hold. Our
algorithm produces a huge number of segments, most of
which are garbage, and many paths in the graph that do
not correspond to valid segmentations at all. To overcome
this, we use a reinforcement learning approach where the
human fills an entirely different role: instead of providing
the classifier with labeled examples of valid segments, the
algorithm asks the human to annotate segments that have
been misclassified, and then learns from the feedback.
The algorithm is able to initiate the learning process
because the first two components of the algorithm (the
cut-point detector and the slicer) are fully unsupervised.

A K E
Needs human judgment

Figure 7: The algorithm asks for feedback when a seg-
ment surrounded by two correctly classified segments is
misclassified

In a nutshell, our reinforcement learning works as fol-
lows: during training, the algorithm processes a set of
labeled captchas and isolates the captchas that were not
successfully recognized. For the failed captchas, the al-
gorithm asks for human feedback when a segment sur-
rounded by two correctly classified segments is misclassi-
fied (see figure 7). In those cases, the algorithm needs the
human expertise because the misclassification could be
due either to improper segmentation, or to bad recognition
and the algorithm is unable to tell them apart by itself.
Examples of improper segmentation and bad recognition
are shown in figure 8. If the error was due to improper
segmentation, the segment is discarded. If the error was
due to a recognition error, the segment is added to the
classifier training set. When all the cases are reviewed,
the algorithm is retrained with the enriched dataset. In
practice, even a single round of reinforcement learning
is enough to significantly improve accuracy, as summa-
rized in table 3. The number of cases requiring manual
intervention was small enough where we performed the
corrections ourselves.

Bad segmentation Bad recognition

4
1
t

4
o
7

:

:

:

:

:

:

Figure 8: Examples of misclassification due to bad seg-
mentation and bad recognition

5.3 Occluding lines
The last fundamental hurdle we needed to overcome to
produce a fully generic algorithm was to deal with occlud-
ing lines. While not as popular as negative kerning, lines
are used by some captcha providers. For example Baidu
2011 (figure 9) uses both lines and negative kerning to
defend against automated solvers.

Without the line class With the line class
Baidu 8.78% 17.27%

Table 1: Impact of adding a line class on the recognition
rate for the Baidu scheme without iterative learning

6

Ensemble learning, while deceptively simple, is very
robust to noise and leverages the fact that there is not
one but multiple ways to segment an occlusion based
captcha that will yield the correct answer. The Condorcet
theorem [40] implies that combining paths yields better
predictive performance than could be obtained from a
single path in isolation. In our experience, the right voting
approach is critical to the algorithm’s success. While this
approach is accurate, it is also very slow to the point of
being impractical, which is why we discuss trade-offs that
can be applied to make the algorithm orders of magnitude
faster while retaining most of its accuracy in Section 6.

5.2 Reinforcement learning
The traditional way to train a character classifier is to
provide a set of labeled captchas already segmented
and let the classifier learn to recognize each char-
acter from those segments using the labels. This
process assumes that the classifier is given the cor-
rect number of segments - one for each letter in the
captcha. In the segment then recognize approach, this
assumption holds because the segmentation is handled
by a vision algorithm that is not part of the classifier itself.

In our case, this assumption does not hold. Our
algorithm produces a huge number of segments, most of
which are garbage, and many paths in the graph that do
not correspond to valid segmentations at all. To overcome
this, we use a reinforcement learning approach where the
human fills an entirely different role: instead of providing
the classifier with labeled examples of valid segments, the
algorithm asks the human to annotate segments that have
been misclassified, and then learns from the feedback.
The algorithm is able to initiate the learning process
because the first two components of the algorithm (the
cut-point detector and the slicer) are fully unsupervised.

A K E
Needs human judgment

Figure 7: The algorithm asks for feedback when a seg-
ment surrounded by two correctly classified segments is
misclassified

In a nutshell, our reinforcement learning works as fol-
lows: during training, the algorithm processes a set of
labeled captchas and isolates the captchas that were not
successfully recognized. For the failed captchas, the al-
gorithm asks for human feedback when a segment sur-
rounded by two correctly classified segments is misclassi-
fied (see figure 7). In those cases, the algorithm needs the
human expertise because the misclassification could be
due either to improper segmentation, or to bad recognition
and the algorithm is unable to tell them apart by itself.
Examples of improper segmentation and bad recognition
are shown in figure 8. If the error was due to improper
segmentation, the segment is discarded. If the error was
due to a recognition error, the segment is added to the
classifier training set. When all the cases are reviewed,
the algorithm is retrained with the enriched dataset. In
practice, even a single round of reinforcement learning
is enough to significantly improve accuracy, as summa-
rized in table 3. The number of cases requiring manual
intervention was small enough where we performed the
corrections ourselves.

Bad segmentation Bad recognition

4
1
t

4
o
7

:

:

:

:

:

:

Figure 8: Examples of misclassification due to bad seg-
mentation and bad recognition

5.3 Occluding lines
The last fundamental hurdle we needed to overcome to
produce a fully generic algorithm was to deal with occlud-
ing lines. While not as popular as negative kerning, lines
are used by some captcha providers. For example Baidu
2011 (figure 9) uses both lines and negative kerning to
defend against automated solvers.

Without the line class With the line class
Baidu 8.78% 17.27%

Table 1: Impact of adding a line class on the recognition
rate for the Baidu scheme without iterative learning

6

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Reinforcement illustrated

Ensemble learning, while deceptively simple, is very
robust to noise and leverages the fact that there is not
one but multiple ways to segment an occlusion based
captcha that will yield the correct answer. The Condorcet
theorem [40] implies that combining paths yields better
predictive performance than could be obtained from a
single path in isolation. In our experience, the right voting
approach is critical to the algorithm’s success. While this
approach is accurate, it is also very slow to the point of
being impractical, which is why we discuss trade-offs that
can be applied to make the algorithm orders of magnitude
faster while retaining most of its accuracy in Section 6.

5.2 Reinforcement learning
The traditional way to train a character classifier is to
provide a set of labeled captchas already segmented
and let the classifier learn to recognize each char-
acter from those segments using the labels. This
process assumes that the classifier is given the cor-
rect number of segments - one for each letter in the
captcha. In the segment then recognize approach, this
assumption holds because the segmentation is handled
by a vision algorithm that is not part of the classifier itself.

In our case, this assumption does not hold. Our
algorithm produces a huge number of segments, most of
which are garbage, and many paths in the graph that do
not correspond to valid segmentations at all. To overcome
this, we use a reinforcement learning approach where the
human fills an entirely different role: instead of providing
the classifier with labeled examples of valid segments, the
algorithm asks the human to annotate segments that have
been misclassified, and then learns from the feedback.
The algorithm is able to initiate the learning process
because the first two components of the algorithm (the
cut-point detector and the slicer) are fully unsupervised.

A K E
Needs human judgment

Figure 7: The algorithm asks for feedback when a seg-
ment surrounded by two correctly classified segments is
misclassified

In a nutshell, our reinforcement learning works as fol-
lows: during training, the algorithm processes a set of
labeled captchas and isolates the captchas that were not
successfully recognized. For the failed captchas, the al-
gorithm asks for human feedback when a segment sur-
rounded by two correctly classified segments is misclassi-
fied (see figure 7). In those cases, the algorithm needs the
human expertise because the misclassification could be
due either to improper segmentation, or to bad recognition
and the algorithm is unable to tell them apart by itself.
Examples of improper segmentation and bad recognition
are shown in figure 8. If the error was due to improper
segmentation, the segment is discarded. If the error was
due to a recognition error, the segment is added to the
classifier training set. When all the cases are reviewed,
the algorithm is retrained with the enriched dataset. In
practice, even a single round of reinforcement learning
is enough to significantly improve accuracy, as summa-
rized in table 3. The number of cases requiring manual
intervention was small enough where we performed the
corrections ourselves.

Bad segmentation Bad recognition

4
1
t

4
o
7

:

:

:

:

:

:

Figure 8: Examples of misclassification due to bad seg-
mentation and bad recognition

5.3 Occluding lines
The last fundamental hurdle we needed to overcome to
produce a fully generic algorithm was to deal with occlud-
ing lines. While not as popular as negative kerning, lines
are used by some captcha providers. For example Baidu
2011 (figure 9) uses both lines and negative kerning to
defend against automated solvers.

Without the line class With the line class
Baidu 8.78% 17.27%

Table 1: Impact of adding a line class on the recognition
rate for the Baidu scheme without iterative learning

6

Ensemble learning, while deceptively simple, is very
robust to noise and leverages the fact that there is not
one but multiple ways to segment an occlusion based
captcha that will yield the correct answer. The Condorcet
theorem [40] implies that combining paths yields better
predictive performance than could be obtained from a
single path in isolation. In our experience, the right voting
approach is critical to the algorithm’s success. While this
approach is accurate, it is also very slow to the point of
being impractical, which is why we discuss trade-offs that
can be applied to make the algorithm orders of magnitude
faster while retaining most of its accuracy in Section 6.

5.2 Reinforcement learning
The traditional way to train a character classifier is to
provide a set of labeled captchas already segmented
and let the classifier learn to recognize each char-
acter from those segments using the labels. This
process assumes that the classifier is given the cor-
rect number of segments - one for each letter in the
captcha. In the segment then recognize approach, this
assumption holds because the segmentation is handled
by a vision algorithm that is not part of the classifier itself.

In our case, this assumption does not hold. Our
algorithm produces a huge number of segments, most of
which are garbage, and many paths in the graph that do
not correspond to valid segmentations at all. To overcome
this, we use a reinforcement learning approach where the
human fills an entirely different role: instead of providing
the classifier with labeled examples of valid segments, the
algorithm asks the human to annotate segments that have
been misclassified, and then learns from the feedback.
The algorithm is able to initiate the learning process
because the first two components of the algorithm (the
cut-point detector and the slicer) are fully unsupervised.

A K E
Needs human judgment

Figure 7: The algorithm asks for feedback when a seg-
ment surrounded by two correctly classified segments is
misclassified

In a nutshell, our reinforcement learning works as fol-
lows: during training, the algorithm processes a set of
labeled captchas and isolates the captchas that were not
successfully recognized. For the failed captchas, the al-
gorithm asks for human feedback when a segment sur-
rounded by two correctly classified segments is misclassi-
fied (see figure 7). In those cases, the algorithm needs the
human expertise because the misclassification could be
due either to improper segmentation, or to bad recognition
and the algorithm is unable to tell them apart by itself.
Examples of improper segmentation and bad recognition
are shown in figure 8. If the error was due to improper
segmentation, the segment is discarded. If the error was
due to a recognition error, the segment is added to the
classifier training set. When all the cases are reviewed,
the algorithm is retrained with the enriched dataset. In
practice, even a single round of reinforcement learning
is enough to significantly improve accuracy, as summa-
rized in table 3. The number of cases requiring manual
intervention was small enough where we performed the
corrections ourselves.

Bad segmentation Bad recognition

4
1
t

4
o
7

:

:

:

:

:

:

Figure 8: Examples of misclassification due to bad seg-
mentation and bad recognition

5.3 Occluding lines
The last fundamental hurdle we needed to overcome to
produce a fully generic algorithm was to deal with occlud-
ing lines. While not as popular as negative kerning, lines
are used by some captcha providers. For example Baidu
2011 (figure 9) uses both lines and negative kerning to
defend against automated solvers.

Without the line class With the line class
Baidu 8.78% 17.27%

Table 1: Impact of adding a line class on the recognition
rate for the Baidu scheme without iterative learning

6

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Reducing complexity

Algorithm complexity is extremely high
up to 9h on a single captcha

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Reducing complexity

Algorithm complexity is extremely high
up to 9h on a single captcha

Solutions

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Reducing complexity

Algorithm complexity is extremely high
up to 9h on a single captcha

Reduce the number of possible cuts
inflection points, smart elimination

Solutions

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Reducing complexity

Algorithm complexity is extremely high
up to 9h on a single captcha

Reduce the number of possible cuts
inflection points, smart elimination

Solutions

Faster and less accurate recognition sequential
recognition, left to right

https://www.elie.net/tag/captcha

\

Evaluation on real world captchas

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Yahoo

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Yahoo

Inflection points

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Yahoo

Potential cuts

Inflection points

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Yahoo

Removing bad cuts

Potential cuts

Inflection points

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Yahoo

Removing bad cuts

Potential cuts

Compatible cuts
with start

Inflection points

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Yahoo

Removing bad cuts

Potential cuts

Compatible cuts
with start

Iterative 4cz8jyaz

Inflection points

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Recaptcha example

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Recaptcha example

Inflection points

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Recaptcha example

Inflection points

Potential cuts

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Recaptcha example

Inflection points

Potential cuts

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Recaptcha example

Inflection points

Potential cuts

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Recaptcha example

Inflection points

Potential cuts

Removing bad cuts

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Recaptcha example

Inflection points

Potential cuts

Removing bad cuts

Compatible cuts
with start

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Recaptcha example

Inflection points

Potential cuts

Removing bad cuts

Compatible cuts
with start

Iterative adaclv

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Recaptcha example

Inflection points

Potential cuts

Removing bad cuts

Compatible cuts
with start

full graph adachi

Iterative adaclv

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

How about lines ?

Realize that lines are known shape

Train classifier to recognize them as empty
character

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Baidu example

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Baidu example

Inflection points

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Baidu example

Inflection points

Potential cuts

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Baidu example

Inflection points

Removing bad cuts

Potential cuts

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Baidu example

Inflection points

Removing bad cuts

Potential cuts

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Baidu example

Inflection points

Removing bad cuts

Potential cuts

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Baidu example

Inflection points

Removing bad cuts

Compatible cuts
with start

Potential cuts

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Baidu example

Inflection points

Removing bad cuts

Compatible cuts
with start

Potential cuts

Iterative a6yk--

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Baidu example

Inflection points

Removing bad cuts

Compatible cuts
with start

Potential cuts

Iterative a6yk--

full graph a6yk--

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Overall results

Reinforcement learning Simple learning Previous Work
Full L-R L-R Time Seq. Full L-R Seq Accuracy Delta Ref.

Baidu (2011) 38.68% 33.42% 3.94 s 36.58% 17.27% 16.55% 16.69% 5% +33.6% [10]
Baidu (2013) 55.22% 54.38% 1.9 s 54.38% - - - 51% +4.22% [21]
CNN - 51.09% 4.9 s 48.54% - 46.40% 45.96% 16% +35.09% [10]
eBay 51.39% 47.92% 2.31 s 48.61% 39.43% 40.14% 36.29% 43% +11.4% [10]
ReCaptcha (2011) 22.67% 21.74% 7.16 s 19.25% 19.86% 18.25% 17.10% 40.4% -17.73% [15]
ReCaptcha (2013) 22.34% 19.22% 4.59 s 19.74% 20% 14.61% 12.77%
Wikipedia - 28.29% - 26.36% - 27.02% 26.24% 25% +3.3% [10]
Yahoo - 3.67% 7.95 s 5.33% - 2.72% 2.29%

Table 3: Recognition rates for real-world schemes. Full denote the full algorithm, L-R denote the Left-Right algorithm
, Seq denote the Sequential algorithm, ”L-R time” for the time the Left-Right algorithm takes to solve a captcha on
average.

7 Evaluation

In this section we report how our algorithm performed
against real-world captchas schemes. Table 3 summarizes
our results. Following the best practices proposed
in [10], our evaluation was performed on a test set of
approximately 1000 captchas for each captcha scheme
that were not used during training. The evaluation was
performed on a core-i5M laptop. The algorithm was
trained the same way once for each scheme without
changing any of the algorithm’s parameters.

We ran the algorithm with and without the various
optimizations described earlier to evaluate how they
impact recognition rate. All results include the cut-point
elimination heuristic.

For certain cases the recognition rates are not available
because the computational cost of running the algorithm
was prohibitive on our test set (over 24 hours of
computation). We compare our results to previous work
when the data is available in column Ref. To establish
a fair comparison between the various schemes we
normalized the number of examples per character to
26, which in practice meant a very small training set of
well under 1000 captchas in all cases. We believe that
normalizing the number of examples per character results
in a more accurate comparison because different schemes
use different character sets.

Our algorithm was able to solve every scheme
with accuracy significantly above the 1% success rate
necessary to deem a captcha scheme insecure [10]. The
algorithm in its best configuration is able to achieve
38.68% on Baidu 2011, 55.22% on Baidu 2013, 51.39%
on eBay, 51.09% on CNN, 22.67% on ReCaptcha 2011,
22.34% on ReCaptcha 2013, 28.29% on Wikipedia,

and 5.33% on Yahoo. On average the reinforcement
learning provides a 6.7% accuracy improvement. Using
the sequential decision instead of the global decision
decreases accuracy on average by 3.42%, the left-right
only decreases it by 1.75%. In terms of speed, the algo-
rithm takes on average 6.22s to process a captcha, which
makes it not only practical, but indeed comparable to
the speed at which humans are able to solve captchas [11].

While still in its infancy, our algorithm in most cases
outperforms previous work that relies on manually
generated segmentation algorithms. More importantly,
our approach does not suffer from the brittleness inherent
in attacks manually tuned against particular distortions.
For instance our approach outperforms [10] and [21].
While [15] outperforms our algorithm on reCaptcha 2011,
the authors acknowledge that their approach is not able to
solve the CNN captcha scheme whereas our algorithm
solves both without modification or tuning. Overall there
is no previous work that is effective against the breadth
of captchas schemes presented in this paper. This leads
us to believe that a unified approach is likely to replace
the segment then recognize approach.

7.1 Learnability
Figure 14 shows how overall accuracy improves as a
function of the number of training examples per character.
We confirm the findings of [10] that it does not take very
many examples to achieve a sufficient accuracy rate. This
figure also shows that the left-right approach does not
seem to require more examples than the global one.

9

Generic approach: Succeed where the old approach
fail and most often beat it where it worked

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Human vs computers

Baidu
Baidu left-right
ebay
eBay left-right
ReCaptcha
ReCaptcha left-right

R
ec

og
ni

tio
n

ra
te

0%

10%

20%

30%

Number of examples per class
1 2 3 4 5 10 15 20

Figure 14: Recognition rate as a function of the number
of example in each class.

7.2 Human accuracy
To complete our investigation of negative kerning, we
also quantified human accuracy compared to the accuracy
of our algorithm at different levels of distortion. We
ran an experiment, with IRB approval, on Internet users
using Amazon Mechanical Turk [28]. We asked Turkers
to solve 2000 captchas for each kerning that ranged
from 0 pixels to -7 pixels (16 000 captchas total). The
captchas were 6 characters long, drawn at random from
the character set a-z and use the Arial font in 20px. We
discarded captchas that were solved too quickly (< 4s)
or to slowly (> 15s) as they were most likely not honest
attempts to solve the captcha. We ran our algorithm on
those 8 kerning variations as well.

Figure 15 shows the result of the experiment. The gap
between human and machine accuracy for negative kern-
ing based distortion is too narrow to be used reliably as a
reverse Turing test. Driving the algorithm’s recognition
rate close to 0% using solely this type of distortion will
lead to a horrendous human recognition rate (< 20%).
We acknowledge that fully understanding human vs.
machine ability to process distortion is a fascinating
problem in its own right, and we leave it to future
work. Nevertheless this experiment supports our claim
that devising effective text-based captchas is very difficult.

8 Areas of improvement

While our algorithm produces good results, it is just the
first rough implementation of the new holistic approach.
This section highlights some of the most promising
directions for improvement.

Human accuracy
Breaker accuracy (left-right)

Ac
cu

ra
cy

0%

20%

40%

60%

80%

100%

Spacing between letters
0px -1px -2px -3px -4px -5px -6px -7px

Figure 15: Human and Algorithm accuracy vs. spacing
between letters in pixel

Learn the KNN weights The current implementation
uses a single manually chosen set of weights for the KNN
distance computation that performed well on our corpus.
We believe that automatically learning those weights
for each captcha scheme would improve accuracy,
particularly for schemes that use unusual fonts or specific
distortions. We believe that it is possible to accomplish
this fully unsupervised, similar to the cut-point detector
and slicer phases of our algorithm.

Improve cut-point elimination As discussed in sec-
tion 6.1, we rely on a set of heuristics to remove unlikely
cut lines to increase the speed of the algorithm. As our
evaluation suggests, this heuristic generates a drop in ac-
curacy (-3.6% on Baidu). Finding a better set of heuristics
that are both generic and more precise is an open question.

Additional Occlusion As pointed out earlier, Baidu and
CNN captcha schemes use occluding lines with low
curvature. While our results on these captcha schemes
are very good and our algorithm properly detects lines
(see section 5.3), future work should investigate in depth
how various types of lines, e.g., sine waves that have a
high curvature, impact the recognition rate. It should also
consider other types of occlusion, e.g., blobs. To date, we
have not found real world captcha schemes that employ
this type of occlusion; perhaps occlusion of this type
presents usability challenges that make it impractical for
humans.

Explore deep neural networks A primary contribution
of this work is to empirically demonstrate the effec-
tiveness of performing segmentation and recognition
simultaneously. Accordingly, we have considered other
algorithms that are able to process captchas in a holistic
manner.

10

The gap between Human and computer recognition is
now too narrow to be considered secure

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

The end of an era, the dawn of a new one

https://www.elie.net/tag/captcha

Elie Bursztein The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Summary

New generationDeprecated

Segment and Recognize
attacks

Risk analysis defense

Purely based AI Attack

Text distortions defense

https://www.elie.net/tag/captcha

Elie Bursztein, Matthieu Martin, John C. Mitchell Text-based CAPTCHAS strenghts and weaknesses http://ly.tl/p22

Captcha research
https://www.elie.net/tag/captcha

Follow-me on Twitter
@elie

Questions ?

http://ly.tl/t1
https://www.elie.net/tag/captcha

