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Figure 2: The segment then recognize approach illustrated

Over the last decade, it has become well-
established [12, 10] that a captcha’s ability to withstand
automated solving lies in the difficulty of segmenting the
image into individual characters rather than recognizing
the characters themselves. A seminal work from
2005 demonstrated that machine learning algorithms
consistently outperform humans for single character
recognition [12]. Thus the innovation in automated
captcha solving shifted from optical character recogni-
tion (OCR) to solving computer vision problems such as
object occlusion in order to segment characters. To date,
no general algorithm for character segmentation is known.

Previous work related to automated captcha solving
falls roughly into two categories: The first type of attack
uses side-channel information unrelated to the distortion
itself, e.g., dictionary attacks [6, 4]. We do not dwell
on this type of attack because it is usually trivial for the
defender to patch, and because the goal of this work is to
treat captchas in a generic manner.

The second type of attack focuses on finding weak-
nesses in the distortion algorithms of particular captcha
schemes. One example of a precisely tuned segmentation
algorithm is [15], where the authors used a complex
image preprocessing phase that relies on character
alignment, morphological segmentation with three-color
bar character encoding and heuristic recognition to break
reCaptcha 2011. While it was very effective against
reCaptcha 2011, it does not generalize to other captcha
schemes that use similar distortion techniques. Similarly
in 2013, a group or researchers examined hollow captcha
specifically and were able to solve all of them using an
extended segment then recognize approach that involves
9 consecutive steps [21]. Our single step approach yields
results that are 4.22% more accurate on the Baidu 2013
scheme. We compare in depth our results with previous
work in Section 7.

To date, research in captcha solving has followed the
familiar exploit-patch cycle where the attacker finds a
flaw in a particular anti-segmentation technique, and the
defender patches it or moves on to a new one. The limita-
tion of the segment then recognize approach has been the
attacker’s ability to find new flaws. As we will show in our
evaluation (section 7), our work overcomes this limitation
by segmenting and recognizing the captcha simultane-
ously, thus removing the need for manually discovered
heuristics to segment captchas.

4 Dataset

Following the methodology of [10], we created a corpus
of real-world captchas to evaluate the effectiveness of our
algorithm. We focused on unbroken real-world captcha
schemes, and ended up creating our corpus from the
schemes depicted in Figure 3.
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Figure 3: Examples of the captchas of the schemes we
evaluated
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Figure 2: The segment then recognize approach illustrated

Over the last decade, it has become well-
established [12, 10] that a captcha’s ability to withstand
automated solving lies in the difficulty of segmenting the
image into individual characters rather than recognizing
the characters themselves. A seminal work from
2005 demonstrated that machine learning algorithms
consistently outperform humans for single character
recognition [12]. Thus the innovation in automated
captcha solving shifted from optical character recogni-
tion (OCR) to solving computer vision problems such as
object occlusion in order to segment characters. To date,
no general algorithm for character segmentation is known.

Previous work related to automated captcha solving
falls roughly into two categories: The first type of attack
uses side-channel information unrelated to the distortion
itself, e.g., dictionary attacks [6, 4]. We do not dwell
on this type of attack because it is usually trivial for the
defender to patch, and because the goal of this work is to
treat captchas in a generic manner.

The second type of attack focuses on finding weak-
nesses in the distortion algorithms of particular captcha
schemes. One example of a precisely tuned segmentation
algorithm is [15], where the authors used a complex
image preprocessing phase that relies on character
alignment, morphological segmentation with three-color
bar character encoding and heuristic recognition to break
reCaptcha 2011. While it was very effective against
reCaptcha 2011, it does not generalize to other captcha
schemes that use similar distortion techniques. Similarly
in 2013, a group or researchers examined hollow captcha
specifically and were able to solve all of them using an
extended segment then recognize approach that involves
9 consecutive steps [21]. Our single step approach yields
results that are 4.22% more accurate on the Baidu 2013
scheme. We compare in depth our results with previous
work in Section 7.

To date, research in captcha solving has followed the
familiar exploit-patch cycle where the attacker finds a
flaw in a particular anti-segmentation technique, and the
defender patches it or moves on to a new one. The limita-
tion of the segment then recognize approach has been the
attacker’s ability to find new flaws. As we will show in our
evaluation (section 7), our work overcomes this limitation
by segmenting and recognizing the captcha simultane-
ously, thus removing the need for manually discovered
heuristics to segment captchas.

4 Dataset

Following the methodology of [10], we created a corpus
of real-world captchas to evaluate the effectiveness of our
algorithm. We focused on unbroken real-world captcha
schemes, and ended up creating our corpus from the
schemes depicted in Figure 3.
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relatively large pixel count if vertically overlapping and in close 
proximity with character loop(s). We developed heuristics based 
on the pixel count and the relative position of loops to detect and 
remove connection loops. Figure 6 (b) shows a different example 
containing a “connection loop” before and after removal. 

 
(a) 

             
(b) 

Figure 6.  Detection of characters with a loop shape. (a) CFS 
on the background color is used for loop detection. (b) An 

example of a connection loop before and after removal. 
Detecting Characters with a Cross. A unique characteristic of a 
cross shape is having four sides; upper, lower, left and right sides. 
We observed that drawing an imaginary box around the cross 
shape must intersect with the box once from each side, with each 
intersection representing one of the cross shape four sides.  

 We detect the cross as follows.   a) We traverse the image using 
the imaginary box, and if each of the four sides of the box 
intersects with one and only one foreground colored pixel, then 
the box position is labeled as a possible cross shape component. 
After that, we shift the box position and continue searching for 
other cross shapes, until the entire image is traversed.  b) We filter 
through all the possible cross shapes, and we keep only those 
satisfying these conditions. First, the position of the cross shape is 
in the upper side of its foreground component. Second, all the 
foreground pixels covered by the box area are connected with 
each other (we used CFS to verify this condition), this condition 
is needed as all the pixels in a valid cross shape are connected 
with each other  Finally, the cross shape must not overlap 
vertically with a loop shape. In Figure 7, the red box indicates the 
imaginary box and thus the location of a cross shape. 

 
Figure 7.  Detecting characters with a cross shape (the 

detected cross shapes are highlighted by a red box). 
S Vertical Histogram. The unique shape characteristic of the 
character “s” is that it contains three vertically overlapping 
strokes in its shape. We detect it as follows.  First, we map the 
image against a vertical histogram that represents the total number 
of foreground pixels in each column. Then we ignore all parts of 
the histogram that intersects with other character shapes (this is 
done to insure no false detection of characters having three 
vertically overlapping strokes, such as “a” or “e”). Second, we 
search the histogram for consecutive occurrence of columns with 
the value of three or more pixels in each column; we call such 
occurrence of columns as the “s-span”. Finally,  if an “s-span” has 
a width larger that 25 pixels (a threshold for the character “s” 
minimum width; i.e., the component under analysis has a width 
large enough to contain an “s”), then we use the s-span’s left-most 
and right-most columns as a reference to draw a bounding box 
around the characters “s”. Figure 8 shows the histogram 
(magnified by a factor of 4) and the “s” character bounding box.  

 
Figure 8.  S Vertical Histogram. Identification of the 

character “s” location, as highlighted by a bounding box. 

3.3 Segmentation  
In this step, we cut out characters that have a shape pattern 
detected in the previous step. We use the examples used in the 
previous section to show how we separate ‘i’ from ‘sp’, and how 
to split ‘sp’, ‘ut’ and ‘ws’ – four examples illustrate how to 
segment a character with a dot, a character with a loop, a 
character with a cross, and a character with “s” shape, 
respectively. 

We first convert the detected shape pattern’s color to white (i.e. 
the image background color). This effectively hides the detected 
shape, and breaks connected characters into separate components, 
as shown in Figure 9. Note: for a character with dot, the detected 
shape includes the dot, and the vertical part of the body.  

All visible components in Figure 9 can be classified into two 
types. The first type belongs to only one character, and we call 
them private components. For example, in Figure 9(a), the 
component in green color and the component in red were 
previously both connected to the body of the character “i”. They 
belong to this character only, and therefore are private 
components. The second type of components occurs as the result 
of connected characters; these components do not belong to a 
single character alone, and we call them shared components. In 
Figure 9 (a), the component in brown color is a shared 
component, since it consists of a stroke that was previously 
connecting characters ‘p’ and ‘i’. 

Similarly, in Figure 9(b), private components are the blue one and 
the red one, and the green component is a shared one. In Figure 
9(c), the green component is a shared one, and all others are 
private components. In Figure 9(d), the blue component is a 
shared one, and all others are private components. 

It is simple to automatically differentiate between private and 
shared components: a shared component connects with other 
characters, and therefore has a much larger pixel count than a 
private component does.  

 
(a)      (b) 

 
(c)      (d) 

Figure 9.  Locating shared and private components.  
As such, the task for segmenting a detected character becomes 
identifying where to cut in shared components. The properly cut 
shared components, a detected shape pattern and its associated 
private components will form a complete character. 
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(magnified by a factor of 4) and the “s” character bounding box.  
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As such, the task for segmenting a detected character becomes 
identifying where to cut in shared components. The properly cut 
shared components, a detected shape pattern and its associated 
private components will form a complete character. 

 
 

Identifying Cutting Points. The location of a cutting point on a 
shared component is dependent on the nature of the character, 
which the component connects to.  

For a shared component that connects with a character with a dot 
shape, the cutting point is close to the character in terms of 
horizontal distance. The reason is that such a character has a small 
width, and if we cut far away from the character, we will likely 
destroy its connect character(s). The cutting point we choose will 
make sure that we preserve both the dot character and its adjacent 
characters. The identification of cutting points for shared 
components that connect with a character with a cross pattern is 
similar, and for the same reason.  

For a shared component that connects with a character with a 
loop, the cutting point is farther way from the character in terms 
of horizontal distance. The reason is this: a loop shape typically is 
inside a character; if we cut too close to the character, we will 
destroy it. Similarly, for a shared component that connects with 
an ‘s’ shape, we cut at a point that is far away from the character 
with ‘s” shape.  

Figure 10 gives an example of identifying the cutting point. Since 
the shared component, connecting characters “u” and “t”, is 
positioned to the left of the cross shape and starts from the lower 
side of the cross shape, the cutting point is estimated at 15 pixels 
in horizontal distance to the left of the cross shape. The arrow 
indicates a distance of 15 pixels, and a red circle highlights the 
cutting point. 

 
Figure 10.  Locating a cutting point in a shared component. 

Cutting. Cutting points are identified in a thinned image, but our 
real cutting is done in the image’s un-thinned version. We could 
do the segmentation in the thinned image. However, cutting the 
non-thin version has advantages. First, we can reuse the rate of 
recognizing individual characters in Google CAPTCHA reported 
in the literature for estimating our overall success (segmentation 
and then recognition) of breaking the Google scheme. It is useful 
future work to check whether recognizing thinned individual 
characters works better than recognizing un-thinned ones, but not 
important for this paper. Second, the un-thinned version preserves 
original character shapes, which as discussed later allow further 
improvements to our attack. 

We first copy cutting points from a thinned image to its un-
thinned version. This is done, as illustrated in Figure 11, by 
superimposing two images, since they have the exact same width 
and height. Then, we draw an imaginary box (6x15 pixels in 
dimension, illustrated in red in Figure 11) around the cutting 
point, and within this box, we try to find the shortest path that can 
cut through a character stroke. If such path exists, then we cut 
through it, else we cut vertically at the location of the cutting 
point.  

The shortest cutting path exists in the case shown in Figure 11, 
and is identified as follows. The green color represents a set of 
points S1, located in the upper side of the imaginary box. The 
blue color represents a set of points S2, located in the lower side 

of the box. To find the shortest path that can cut through the 
character stroke shared by “u” and “t”, we compute the distance 
between every point in S1 to every point in S2. The points with 
the shortest distance are then used to cut through the character 
stroke. In Figure 11, both of the upper and the lowers sides of the 
imaginary box extended outside the area of the character stroke. 
But, in some cases, the upper side, the lower side, or both upper 
and lower sides of the imaginary box remains inside the character 
stroke. In such cases, the character stroke is cut vertically at the 
position of the cutting point.  

Figure 12 shows the output of cutting the shared components in 
the non-thin version of the characters, where each segmented 
character is highlighted with a distinct color.  

 

Figure 11.  An example of segmenting a shared components.  

3.4 Tuning 
The order of character detection and segmentation is about 
which shape character is to be detected and segmented first (when 
multiple options exists), and this has an impact on our attack’s 
success rate. The optimal order we found is to first process (detect 
and segment) characters with a dot, then characters with a loop, 
next characters with a cross, and finally “s”-shape characters.  

This is mainly a decreasing ranking order in terms of false 
positive rates introduced by each method. For instance, the dot 
shape has a unique shape, and its detection method has only 1% 
false positive. As a result, its order was first.  

On the other hand, the arrangement of characters and their 
connection patterns resembled character shapes in some cases. 
For example, we found that some of the connection patterns 
between characters resembled a cross shape, leading to a false 
detection of the cross shape. For example, the connection pattern 
between the characters “e” and “s” in Figure 12. In addition, 
horizontally overlapping italic font in connected characters could 
be confused with the character “s”. For this, we decided to use the 
loop method second in order, as the segmentation of loop 
character lowers the chance of false “cross” and “s” shape 
patterns.  

Since the “s” detection method is restricted to the analysis of wide 
characters only, we decided to use it last after the cross detection 
method, thus lowering the chances of confusing horizontally 
overlapping connected characters with the “s” shape. 

Among our segmentation results in Figure 12, in “perspi”, the 
connection between “pi” was segmented first using the dot 
segmentation method, followed by the segmentation of the 
connection between “er” and “sp” using the loop 
detection/segmentation algorithm; in “phautta”, the connection 

 
 

between “ha”, “au” and “ta” was segmented first using the loop 
segmentation method as no dots were detected in this case and the 
connection between “ut” was segmented using the cross 
segmentation method; in “cowsi”, the connection between “co” 
was segmented using the loop segmentation method first, 
followed by the segmentation of the connection between “ws”, 
and finally, in “reses”, only the loop segmentation method was 
used. 

  

   
Figure 12.  Segmentation results of the Google scheme: each 

segmented character is highlighted with a distinct color. 
Up-sampling has an impact on both our attack’s success rate and 
speed. We tested with different up-sampling ratios such as 1, 2, 3 
and 4. The higher the up-sampling ratio is, the higher success rate 
our segmentation attack can achieve, and the slower the attack is. 
The explanation is simple: up-sampling enlarges an image, and 
therefore it slows down the attack; up-sampling also smoothes 
characters and their connection areas, reducing segmentation 
errors. We identify that the optimal up-sampling ratio is 3, which 
achieved a reasonably good balance between the attack success 
and speed. Measurements reported in this paper are based on this 
configuration.  

3.5 Attack Success and Speed 
Our attack achieved a success rate of 68% on a sample-set of 100 
challenges. Following a common practice in the areas of computer 
vision and machine learning, we tested our attack on 400 
independent samples from a test-set and achieved a success rate of 
62%2. We did not use any of the test-set samples in our attack 
design, as the test-set aims to generalize our attack on 
independent samples. That is the attack is generic enough to all 
challenges generated by this version of Google CAPTCHA. 
Given that the state-of-the-art can achieve a success rate of 95% 
in recognizing individual segmented characters [6], and an 
average number of characters in Google CAPTCHA of 5.5 
characters, our attack implies that it could lead to an overall 
(segmentation and then recognition) success rate of 46.75% (62 * 
0.95^5.5) for breaking this Google CAPTCHA. 

We implemented our attack using Java, and tested it on a desktop 
computer with a 2.4 GHz Intel Core 4 CPU and 4 GB RAM. We 
ran the attack 10 times on both the sample and test sets to 
compute its speed and on average our attack took 7 seconds to 
segment a challenge.   

3.6 Further Enhancements 
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as it (shown in Figure 13(a)) resembles a “v” shape in the upper 
side, and a reversed “v” shape in the lower side.   
                                                                 
2 Our sample set was collected in June 2009, and the test set in 

August 2010; both dates were random choices. 
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v” shape. Figure 13(b) shows a segmentation result. 

  
(a)       (b) 

Figure 13.  Google CAPTCHA: (a) A “double v” connection 
pattern. (b) Segmenting result.  

With this “double v” enhancement, our attack has achieved a 
segmentation success rate of 74% in the sample-set, and 69% on 
the test-set. This is so far the most successful attack on a usable 
version of Google CAPTCHA. 

4. THE ROBUSTNESS OF RECAPTCHA 
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server and thus functions as a CAPTCHA, whereas the answer to 
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functionality. The other crucial difference in ReCAPTCHA can 
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character set includes numbers. Moreover, some of its challenge 
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Figure 14.  ReCAPTCHA: a challenge sample.  
To show that our attack on Google CAPTCHA is applicable to 
other schemes, we developed a variant of the attack for 
ReCAPTCHA, and it works as follows.  

4.1 Preprocessing 
In this step we first divide a challenge into two images, each 
containing a challenge string. This is done by mapping the 
challenge against a vertical histogram representing the total 
number of black pixels in each column. Then, we search the 
histogram for a column satisfying two conditions: first, it contains 
no black pixels and, second, its position along the x-axis is the 
closest to the mid value of the image width. We cut through this 
column to divide the challenge into two images.  Next, each of the 
two images is up-sampled by a factor of three and then binarised.  
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Reinforcement illustrated

Ensemble learning, while deceptively simple, is very
robust to noise and leverages the fact that there is not
one but multiple ways to segment an occlusion based
captcha that will yield the correct answer. The Condorcet
theorem [40] implies that combining paths yields better
predictive performance than could be obtained from a
single path in isolation. In our experience, the right voting
approach is critical to the algorithm’s success. While this
approach is accurate, it is also very slow to the point of
being impractical, which is why we discuss trade-offs that
can be applied to make the algorithm orders of magnitude
faster while retaining most of its accuracy in Section 6.

5.2 Reinforcement learning
The traditional way to train a character classifier is to
provide a set of labeled captchas already segmented
and let the classifier learn to recognize each char-
acter from those segments using the labels. This
process assumes that the classifier is given the cor-
rect number of segments - one for each letter in the
captcha. In the segment then recognize approach, this
assumption holds because the segmentation is handled
by a vision algorithm that is not part of the classifier itself.

In our case, this assumption does not hold. Our
algorithm produces a huge number of segments, most of
which are garbage, and many paths in the graph that do
not correspond to valid segmentations at all. To overcome
this, we use a reinforcement learning approach where the
human fills an entirely different role: instead of providing
the classifier with labeled examples of valid segments, the
algorithm asks the human to annotate segments that have
been misclassified, and then learns from the feedback.
The algorithm is able to initiate the learning process
because the first two components of the algorithm (the
cut-point detector and the slicer) are fully unsupervised.
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Needs human judgment

Figure 7: The algorithm asks for feedback when a seg-
ment surrounded by two correctly classified segments is
misclassified

In a nutshell, our reinforcement learning works as fol-
lows: during training, the algorithm processes a set of
labeled captchas and isolates the captchas that were not
successfully recognized. For the failed captchas, the al-
gorithm asks for human feedback when a segment sur-
rounded by two correctly classified segments is misclassi-
fied (see figure 7). In those cases, the algorithm needs the
human expertise because the misclassification could be
due either to improper segmentation, or to bad recognition
and the algorithm is unable to tell them apart by itself.
Examples of improper segmentation and bad recognition
are shown in figure 8. If the error was due to improper
segmentation, the segment is discarded. If the error was
due to a recognition error, the segment is added to the
classifier training set. When all the cases are reviewed,
the algorithm is retrained with the enriched dataset. In
practice, even a single round of reinforcement learning
is enough to significantly improve accuracy, as summa-
rized in table 3. The number of cases requiring manual
intervention was small enough where we performed the
corrections ourselves.
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Figure 8: Examples of misclassification due to bad seg-
mentation and bad recognition

5.3 Occluding lines
The last fundamental hurdle we needed to overcome to
produce a fully generic algorithm was to deal with occlud-
ing lines. While not as popular as negative kerning, lines
are used by some captcha providers. For example Baidu
2011 (figure 9) uses both lines and negative kerning to
defend against automated solvers.

Without the line class With the line class
Baidu 8.78% 17.27%

Table 1: Impact of adding a line class on the recognition
rate for the Baidu scheme without iterative learning

6

Ensemble learning, while deceptively simple, is very
robust to noise and leverages the fact that there is not
one but multiple ways to segment an occlusion based
captcha that will yield the correct answer. The Condorcet
theorem [40] implies that combining paths yields better
predictive performance than could be obtained from a
single path in isolation. In our experience, the right voting
approach is critical to the algorithm’s success. While this
approach is accurate, it is also very slow to the point of
being impractical, which is why we discuss trade-offs that
can be applied to make the algorithm orders of magnitude
faster while retaining most of its accuracy in Section 6.

5.2 Reinforcement learning
The traditional way to train a character classifier is to
provide a set of labeled captchas already segmented
and let the classifier learn to recognize each char-
acter from those segments using the labels. This
process assumes that the classifier is given the cor-
rect number of segments - one for each letter in the
captcha. In the segment then recognize approach, this
assumption holds because the segmentation is handled
by a vision algorithm that is not part of the classifier itself.

In our case, this assumption does not hold. Our
algorithm produces a huge number of segments, most of
which are garbage, and many paths in the graph that do
not correspond to valid segmentations at all. To overcome
this, we use a reinforcement learning approach where the
human fills an entirely different role: instead of providing
the classifier with labeled examples of valid segments, the
algorithm asks the human to annotate segments that have
been misclassified, and then learns from the feedback.
The algorithm is able to initiate the learning process
because the first two components of the algorithm (the
cut-point detector and the slicer) are fully unsupervised.

A K E
Needs human judgment

Figure 7: The algorithm asks for feedback when a seg-
ment surrounded by two correctly classified segments is
misclassified

In a nutshell, our reinforcement learning works as fol-
lows: during training, the algorithm processes a set of
labeled captchas and isolates the captchas that were not
successfully recognized. For the failed captchas, the al-
gorithm asks for human feedback when a segment sur-
rounded by two correctly classified segments is misclassi-
fied (see figure 7). In those cases, the algorithm needs the
human expertise because the misclassification could be
due either to improper segmentation, or to bad recognition
and the algorithm is unable to tell them apart by itself.
Examples of improper segmentation and bad recognition
are shown in figure 8. If the error was due to improper
segmentation, the segment is discarded. If the error was
due to a recognition error, the segment is added to the
classifier training set. When all the cases are reviewed,
the algorithm is retrained with the enriched dataset. In
practice, even a single round of reinforcement learning
is enough to significantly improve accuracy, as summa-
rized in table 3. The number of cases requiring manual
intervention was small enough where we performed the
corrections ourselves.

Bad segmentation Bad recognition

4
1
t

4
o
7

:

:

:

:

:

:

Figure 8: Examples of misclassification due to bad seg-
mentation and bad recognition

5.3 Occluding lines
The last fundamental hurdle we needed to overcome to
produce a fully generic algorithm was to deal with occlud-
ing lines. While not as popular as negative kerning, lines
are used by some captcha providers. For example Baidu
2011 (figure 9) uses both lines and negative kerning to
defend against automated solvers.

Without the line class With the line class
Baidu 8.78% 17.27%

Table 1: Impact of adding a line class on the recognition
rate for the Baidu scheme without iterative learning

6

https://www.elie.net/tag/captcha


Elie Bursztein  The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Reinforcement illustrated

Ensemble learning, while deceptively simple, is very
robust to noise and leverages the fact that there is not
one but multiple ways to segment an occlusion based
captcha that will yield the correct answer. The Condorcet
theorem [40] implies that combining paths yields better
predictive performance than could be obtained from a
single path in isolation. In our experience, the right voting
approach is critical to the algorithm’s success. While this
approach is accurate, it is also very slow to the point of
being impractical, which is why we discuss trade-offs that
can be applied to make the algorithm orders of magnitude
faster while retaining most of its accuracy in Section 6.

5.2 Reinforcement learning
The traditional way to train a character classifier is to
provide a set of labeled captchas already segmented
and let the classifier learn to recognize each char-
acter from those segments using the labels. This
process assumes that the classifier is given the cor-
rect number of segments - one for each letter in the
captcha. In the segment then recognize approach, this
assumption holds because the segmentation is handled
by a vision algorithm that is not part of the classifier itself.

In our case, this assumption does not hold. Our
algorithm produces a huge number of segments, most of
which are garbage, and many paths in the graph that do
not correspond to valid segmentations at all. To overcome
this, we use a reinforcement learning approach where the
human fills an entirely different role: instead of providing
the classifier with labeled examples of valid segments, the
algorithm asks the human to annotate segments that have
been misclassified, and then learns from the feedback.
The algorithm is able to initiate the learning process
because the first two components of the algorithm (the
cut-point detector and the slicer) are fully unsupervised.

A K E
Needs human judgment

Figure 7: The algorithm asks for feedback when a seg-
ment surrounded by two correctly classified segments is
misclassified

In a nutshell, our reinforcement learning works as fol-
lows: during training, the algorithm processes a set of
labeled captchas and isolates the captchas that were not
successfully recognized. For the failed captchas, the al-
gorithm asks for human feedback when a segment sur-
rounded by two correctly classified segments is misclassi-
fied (see figure 7). In those cases, the algorithm needs the
human expertise because the misclassification could be
due either to improper segmentation, or to bad recognition
and the algorithm is unable to tell them apart by itself.
Examples of improper segmentation and bad recognition
are shown in figure 8. If the error was due to improper
segmentation, the segment is discarded. If the error was
due to a recognition error, the segment is added to the
classifier training set. When all the cases are reviewed,
the algorithm is retrained with the enriched dataset. In
practice, even a single round of reinforcement learning
is enough to significantly improve accuracy, as summa-
rized in table 3. The number of cases requiring manual
intervention was small enough where we performed the
corrections ourselves.

Bad segmentation Bad recognition

4
1
t

4
o
7

:

:

:

:

:

:

Figure 8: Examples of misclassification due to bad seg-
mentation and bad recognition

5.3 Occluding lines
The last fundamental hurdle we needed to overcome to
produce a fully generic algorithm was to deal with occlud-
ing lines. While not as popular as negative kerning, lines
are used by some captcha providers. For example Baidu
2011 (figure 9) uses both lines and negative kerning to
defend against automated solvers.

Without the line class With the line class
Baidu 8.78% 17.27%

Table 1: Impact of adding a line class on the recognition
rate for the Baidu scheme without iterative learning

6

Ensemble learning, while deceptively simple, is very
robust to noise and leverages the fact that there is not
one but multiple ways to segment an occlusion based
captcha that will yield the correct answer. The Condorcet
theorem [40] implies that combining paths yields better
predictive performance than could be obtained from a
single path in isolation. In our experience, the right voting
approach is critical to the algorithm’s success. While this
approach is accurate, it is also very slow to the point of
being impractical, which is why we discuss trade-offs that
can be applied to make the algorithm orders of magnitude
faster while retaining most of its accuracy in Section 6.

5.2 Reinforcement learning
The traditional way to train a character classifier is to
provide a set of labeled captchas already segmented
and let the classifier learn to recognize each char-
acter from those segments using the labels. This
process assumes that the classifier is given the cor-
rect number of segments - one for each letter in the
captcha. In the segment then recognize approach, this
assumption holds because the segmentation is handled
by a vision algorithm that is not part of the classifier itself.

In our case, this assumption does not hold. Our
algorithm produces a huge number of segments, most of
which are garbage, and many paths in the graph that do
not correspond to valid segmentations at all. To overcome
this, we use a reinforcement learning approach where the
human fills an entirely different role: instead of providing
the classifier with labeled examples of valid segments, the
algorithm asks the human to annotate segments that have
been misclassified, and then learns from the feedback.
The algorithm is able to initiate the learning process
because the first two components of the algorithm (the
cut-point detector and the slicer) are fully unsupervised.

A K E
Needs human judgment

Figure 7: The algorithm asks for feedback when a seg-
ment surrounded by two correctly classified segments is
misclassified

In a nutshell, our reinforcement learning works as fol-
lows: during training, the algorithm processes a set of
labeled captchas and isolates the captchas that were not
successfully recognized. For the failed captchas, the al-
gorithm asks for human feedback when a segment sur-
rounded by two correctly classified segments is misclassi-
fied (see figure 7). In those cases, the algorithm needs the
human expertise because the misclassification could be
due either to improper segmentation, or to bad recognition
and the algorithm is unable to tell them apart by itself.
Examples of improper segmentation and bad recognition
are shown in figure 8. If the error was due to improper
segmentation, the segment is discarded. If the error was
due to a recognition error, the segment is added to the
classifier training set. When all the cases are reviewed,
the algorithm is retrained with the enriched dataset. In
practice, even a single round of reinforcement learning
is enough to significantly improve accuracy, as summa-
rized in table 3. The number of cases requiring manual
intervention was small enough where we performed the
corrections ourselves.

Bad segmentation Bad recognition

4
1
t

4
o
7

:

:

:

:

:

:

Figure 8: Examples of misclassification due to bad seg-
mentation and bad recognition

5.3 Occluding lines
The last fundamental hurdle we needed to overcome to
produce a fully generic algorithm was to deal with occlud-
ing lines. While not as popular as negative kerning, lines
are used by some captcha providers. For example Baidu
2011 (figure 9) uses both lines and negative kerning to
defend against automated solvers.

Without the line class With the line class
Baidu 8.78% 17.27%

Table 1: Impact of adding a line class on the recognition
rate for the Baidu scheme without iterative learning

6

https://www.elie.net/tag/captcha


Elie Bursztein  The End is Nigh: Generic Solving of Text-based CAPTCHAs https://www.elie.net/tag/captcha

Reinforcement illustrated

Ensemble learning, while deceptively simple, is very
robust to noise and leverages the fact that there is not
one but multiple ways to segment an occlusion based
captcha that will yield the correct answer. The Condorcet
theorem [40] implies that combining paths yields better
predictive performance than could be obtained from a
single path in isolation. In our experience, the right voting
approach is critical to the algorithm’s success. While this
approach is accurate, it is also very slow to the point of
being impractical, which is why we discuss trade-offs that
can be applied to make the algorithm orders of magnitude
faster while retaining most of its accuracy in Section 6.

5.2 Reinforcement learning
The traditional way to train a character classifier is to
provide a set of labeled captchas already segmented
and let the classifier learn to recognize each char-
acter from those segments using the labels. This
process assumes that the classifier is given the cor-
rect number of segments - one for each letter in the
captcha. In the segment then recognize approach, this
assumption holds because the segmentation is handled
by a vision algorithm that is not part of the classifier itself.

In our case, this assumption does not hold. Our
algorithm produces a huge number of segments, most of
which are garbage, and many paths in the graph that do
not correspond to valid segmentations at all. To overcome
this, we use a reinforcement learning approach where the
human fills an entirely different role: instead of providing
the classifier with labeled examples of valid segments, the
algorithm asks the human to annotate segments that have
been misclassified, and then learns from the feedback.
The algorithm is able to initiate the learning process
because the first two components of the algorithm (the
cut-point detector and the slicer) are fully unsupervised.

A K E
Needs human judgment

Figure 7: The algorithm asks for feedback when a seg-
ment surrounded by two correctly classified segments is
misclassified

In a nutshell, our reinforcement learning works as fol-
lows: during training, the algorithm processes a set of
labeled captchas and isolates the captchas that were not
successfully recognized. For the failed captchas, the al-
gorithm asks for human feedback when a segment sur-
rounded by two correctly classified segments is misclassi-
fied (see figure 7). In those cases, the algorithm needs the
human expertise because the misclassification could be
due either to improper segmentation, or to bad recognition
and the algorithm is unable to tell them apart by itself.
Examples of improper segmentation and bad recognition
are shown in figure 8. If the error was due to improper
segmentation, the segment is discarded. If the error was
due to a recognition error, the segment is added to the
classifier training set. When all the cases are reviewed,
the algorithm is retrained with the enriched dataset. In
practice, even a single round of reinforcement learning
is enough to significantly improve accuracy, as summa-
rized in table 3. The number of cases requiring manual
intervention was small enough where we performed the
corrections ourselves.

Bad segmentation Bad recognition

4
1
t

4
o
7

:

:

:

:

:

:

Figure 8: Examples of misclassification due to bad seg-
mentation and bad recognition

5.3 Occluding lines
The last fundamental hurdle we needed to overcome to
produce a fully generic algorithm was to deal with occlud-
ing lines. While not as popular as negative kerning, lines
are used by some captcha providers. For example Baidu
2011 (figure 9) uses both lines and negative kerning to
defend against automated solvers.

Without the line class With the line class
Baidu 8.78% 17.27%

Table 1: Impact of adding a line class on the recognition
rate for the Baidu scheme without iterative learning

6

Ensemble learning, while deceptively simple, is very
robust to noise and leverages the fact that there is not
one but multiple ways to segment an occlusion based
captcha that will yield the correct answer. The Condorcet
theorem [40] implies that combining paths yields better
predictive performance than could be obtained from a
single path in isolation. In our experience, the right voting
approach is critical to the algorithm’s success. While this
approach is accurate, it is also very slow to the point of
being impractical, which is why we discuss trade-offs that
can be applied to make the algorithm orders of magnitude
faster while retaining most of its accuracy in Section 6.

5.2 Reinforcement learning
The traditional way to train a character classifier is to
provide a set of labeled captchas already segmented
and let the classifier learn to recognize each char-
acter from those segments using the labels. This
process assumes that the classifier is given the cor-
rect number of segments - one for each letter in the
captcha. In the segment then recognize approach, this
assumption holds because the segmentation is handled
by a vision algorithm that is not part of the classifier itself.

In our case, this assumption does not hold. Our
algorithm produces a huge number of segments, most of
which are garbage, and many paths in the graph that do
not correspond to valid segmentations at all. To overcome
this, we use a reinforcement learning approach where the
human fills an entirely different role: instead of providing
the classifier with labeled examples of valid segments, the
algorithm asks the human to annotate segments that have
been misclassified, and then learns from the feedback.
The algorithm is able to initiate the learning process
because the first two components of the algorithm (the
cut-point detector and the slicer) are fully unsupervised.

A K E
Needs human judgment

Figure 7: The algorithm asks for feedback when a seg-
ment surrounded by two correctly classified segments is
misclassified

In a nutshell, our reinforcement learning works as fol-
lows: during training, the algorithm processes a set of
labeled captchas and isolates the captchas that were not
successfully recognized. For the failed captchas, the al-
gorithm asks for human feedback when a segment sur-
rounded by two correctly classified segments is misclassi-
fied (see figure 7). In those cases, the algorithm needs the
human expertise because the misclassification could be
due either to improper segmentation, or to bad recognition
and the algorithm is unable to tell them apart by itself.
Examples of improper segmentation and bad recognition
are shown in figure 8. If the error was due to improper
segmentation, the segment is discarded. If the error was
due to a recognition error, the segment is added to the
classifier training set. When all the cases are reviewed,
the algorithm is retrained with the enriched dataset. In
practice, even a single round of reinforcement learning
is enough to significantly improve accuracy, as summa-
rized in table 3. The number of cases requiring manual
intervention was small enough where we performed the
corrections ourselves.

Bad segmentation Bad recognition

4
1
t

4
o
7

:

:

:

:

:

:

Figure 8: Examples of misclassification due to bad seg-
mentation and bad recognition

5.3 Occluding lines
The last fundamental hurdle we needed to overcome to
produce a fully generic algorithm was to deal with occlud-
ing lines. While not as popular as negative kerning, lines
are used by some captcha providers. For example Baidu
2011 (figure 9) uses both lines and negative kerning to
defend against automated solvers.

Without the line class With the line class
Baidu 8.78% 17.27%

Table 1: Impact of adding a line class on the recognition
rate for the Baidu scheme without iterative learning
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Overall results

Reinforcement learning Simple learning Previous Work
Full L-R L-R Time Seq. Full L-R Seq Accuracy Delta Ref.

Baidu (2011) 38.68% 33.42% 3.94 s 36.58% 17.27% 16.55% 16.69% 5% +33.6% [10]
Baidu (2013) 55.22% 54.38% 1.9 s 54.38% - - - 51% +4.22% [21]
CNN - 51.09% 4.9 s 48.54% - 46.40% 45.96% 16% +35.09% [10]
eBay 51.39% 47.92% 2.31 s 48.61% 39.43% 40.14% 36.29% 43% +11.4% [10]
ReCaptcha (2011) 22.67% 21.74% 7.16 s 19.25% 19.86% 18.25% 17.10% 40.4% -17.73% [15]
ReCaptcha (2013) 22.34% 19.22% 4.59 s 19.74% 20% 14.61% 12.77%
Wikipedia - 28.29% - 26.36% - 27.02% 26.24% 25% +3.3% [10]
Yahoo - 3.67% 7.95 s 5.33% - 2.72% 2.29%

Table 3: Recognition rates for real-world schemes. Full denote the full algorithm, L-R denote the Left-Right algorithm
, Seq denote the Sequential algorithm, ”L-R time” for the time the Left-Right algorithm takes to solve a captcha on
average.

7 Evaluation

In this section we report how our algorithm performed
against real-world captchas schemes. Table 3 summarizes
our results. Following the best practices proposed
in [10], our evaluation was performed on a test set of
approximately 1000 captchas for each captcha scheme
that were not used during training. The evaluation was
performed on a core-i5M laptop. The algorithm was
trained the same way once for each scheme without
changing any of the algorithm’s parameters.

We ran the algorithm with and without the various
optimizations described earlier to evaluate how they
impact recognition rate. All results include the cut-point
elimination heuristic.

For certain cases the recognition rates are not available
because the computational cost of running the algorithm
was prohibitive on our test set (over 24 hours of
computation). We compare our results to previous work
when the data is available in column Ref. To establish
a fair comparison between the various schemes we
normalized the number of examples per character to
26, which in practice meant a very small training set of
well under 1000 captchas in all cases. We believe that
normalizing the number of examples per character results
in a more accurate comparison because different schemes
use different character sets.

Our algorithm was able to solve every scheme
with accuracy significantly above the 1% success rate
necessary to deem a captcha scheme insecure [10]. The
algorithm in its best configuration is able to achieve
38.68% on Baidu 2011, 55.22% on Baidu 2013, 51.39%
on eBay, 51.09% on CNN, 22.67% on ReCaptcha 2011,
22.34% on ReCaptcha 2013, 28.29% on Wikipedia,

and 5.33% on Yahoo. On average the reinforcement
learning provides a 6.7% accuracy improvement. Using
the sequential decision instead of the global decision
decreases accuracy on average by 3.42%, the left-right
only decreases it by 1.75%. In terms of speed, the algo-
rithm takes on average 6.22s to process a captcha, which
makes it not only practical, but indeed comparable to
the speed at which humans are able to solve captchas [11].

While still in its infancy, our algorithm in most cases
outperforms previous work that relies on manually
generated segmentation algorithms. More importantly,
our approach does not suffer from the brittleness inherent
in attacks manually tuned against particular distortions.
For instance our approach outperforms [10] and [21].
While [15] outperforms our algorithm on reCaptcha 2011,
the authors acknowledge that their approach is not able to
solve the CNN captcha scheme whereas our algorithm
solves both without modification or tuning. Overall there
is no previous work that is effective against the breadth
of captchas schemes presented in this paper. This leads
us to believe that a unified approach is likely to replace
the segment then recognize approach.

7.1 Learnability
Figure 14 shows how overall accuracy improves as a
function of the number of training examples per character.
We confirm the findings of [10] that it does not take very
many examples to achieve a sufficient accuracy rate. This
figure also shows that the left-right approach does not
seem to require more examples than the global one.
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Figure 14: Recognition rate as a function of the number
of example in each class.

7.2 Human accuracy
To complete our investigation of negative kerning, we
also quantified human accuracy compared to the accuracy
of our algorithm at different levels of distortion. We
ran an experiment, with IRB approval, on Internet users
using Amazon Mechanical Turk [28]. We asked Turkers
to solve 2000 captchas for each kerning that ranged
from 0 pixels to -7 pixels (16 000 captchas total). The
captchas were 6 characters long, drawn at random from
the character set a-z and use the Arial font in 20px. We
discarded captchas that were solved too quickly (< 4s)
or to slowly (> 15s) as they were most likely not honest
attempts to solve the captcha. We ran our algorithm on
those 8 kerning variations as well.

Figure 15 shows the result of the experiment. The gap
between human and machine accuracy for negative kern-
ing based distortion is too narrow to be used reliably as a
reverse Turing test. Driving the algorithm’s recognition
rate close to 0% using solely this type of distortion will
lead to a horrendous human recognition rate (< 20%).
We acknowledge that fully understanding human vs.
machine ability to process distortion is a fascinating
problem in its own right, and we leave it to future
work. Nevertheless this experiment supports our claim
that devising effective text-based captchas is very difficult.

8 Areas of improvement

While our algorithm produces good results, it is just the
first rough implementation of the new holistic approach.
This section highlights some of the most promising
directions for improvement.

Human accuracy
Breaker accuracy (left-right)
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Figure 15: Human and Algorithm accuracy vs. spacing
between letters in pixel

Learn the KNN weights The current implementation
uses a single manually chosen set of weights for the KNN
distance computation that performed well on our corpus.
We believe that automatically learning those weights
for each captcha scheme would improve accuracy,
particularly for schemes that use unusual fonts or specific
distortions. We believe that it is possible to accomplish
this fully unsupervised, similar to the cut-point detector
and slicer phases of our algorithm.

Improve cut-point elimination As discussed in sec-
tion 6.1, we rely on a set of heuristics to remove unlikely
cut lines to increase the speed of the algorithm. As our
evaluation suggests, this heuristic generates a drop in ac-
curacy (-3.6% on Baidu). Finding a better set of heuristics
that are both generic and more precise is an open question.

Additional Occlusion As pointed out earlier, Baidu and
CNN captcha schemes use occluding lines with low
curvature. While our results on these captcha schemes
are very good and our algorithm properly detects lines
(see section 5.3), future work should investigate in depth
how various types of lines, e.g., sine waves that have a
high curvature, impact the recognition rate. It should also
consider other types of occlusion, e.g., blobs. To date, we
have not found real world captcha schemes that employ
this type of occlusion; perhaps occlusion of this type
presents usability challenges that make it impractical for
humans.

Explore deep neural networks A primary contribution
of this work is to empirically demonstrate the effec-
tiveness of performing segmentation and recognition
simultaneously. Accordingly, we have considered other
algorithms that are able to process captchas in a holistic
manner.
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