
Time has something to tell us about Network
Address Translation

Elie Bursztein∗

Abstract

In this paper we introduce a new technique to count the number of
hosts behind a NAT. This technique based on TCP timestamp option,
works with Linux and BSD system and therefore is complementary to
the previous one base on IPID than does not work for those systems.
Our implementation demonstrates the practicability of this method.

1 Introduction

Network Address Translation (NAT) also known as IP Masquerading in-
volves re-writing the source and/or destination addresses of IP packets as
they pass through a router or firewall. Most systems using NAT in order
to enable multiple hosts on a private network to access the Internet using a
single public IP address. This technique has became popular for number of
reasons, including the shortage of IPv4 addresses. It has become a standard
feature in routers for home and small-office Internet connections. Until now,
the only method known to count how many host are hidden behind a NAT
rely on the IPID field. However, this method has main limitation: it does
not work with systems that does not implement the IPID field as a simple
counter. For instance Linux uses the constant 0 for the IPID field FreeBSD
and OpenBSD use a pseudo random generator for the IPID field. This is why
a complementary approach is necessary to deal with these implementations.

∗LSV, ENS Cachan, CNRS, INRIA, PhD student, supported by a DGA grant.
eb@lsv.ens-cachan.fr

1



The main contribution of this paper is a technique based on the analysis
of the TCP timestamp option to count the hosts behind a NAT. Experimen-
tation shows that this technique works against Linux and OpenBSD NAT
mechanism. Additionally, this technique can be use to performs active fin-
gerprint consistency.

The remainder of this paper is structured as follows. Section 2 provides an
overview of related work concerning NAT detection. Section 3 presents the
TCP timestamp option and its current use in security. Section 4 details the
algorithm that use the timestamp for NAT counting. Section 5 introduces
several additionally use of the techniques. Section 6 covers the limitation
of the technique and how it can be evaded. Section 7 concludes the paper
discussing directions for future work.

2 Related Work

The NAt mechanism was introduced in [4], and the TCP timestamp option
in [6]. The technique that use IPID field to count NATed hosts was presented
in [1]. The IPID field was designed to use in fragment reassembly. RFC 791
[?] describes its role as follows:

The identification field is used to distinguish the fragments of one data-
gram from those of an- other. The originating protocol module of an internet
datagram sets the identification field to a value that must be unique for that
source-destination pair and protocol for the time the datagram will be ac-
tive in the internet system. The originating protocol module of a complete
datagram sets the more-fragments flag to zero and the fragment offset to zero.

Several improvement were made to this technique including the use of OS
fingerprinting as in [3]. NAT can also been detected because it may alters
some packet headers as suggested in [9]. The timestamp option is already
used in security for uptime analysis [5]. The first use of IPID simple counter
behavior, for port scanning was presented in [2].

2



3 The TCP Timestamp Option

The Timestamps option carries two four-byte timestamp fields. The times-
tamp value field (TSval) contains the current value of the timestamp clock of
the TCP sending the option. According to RFC1323: ”The timestamps are
used for two distinct mechanisms: RTTM (Round Trip Time Measurement)
and PAWS (Protect Against Wrapped Sequences). Each OS implementation
increments this value at a specific rate. So it is possible to infers the system
uptime from the timestamp option if the targeted OS is known [7]. For ex-
ample Linux increments it every 1ms and and FreeBSD every 500 ms. This
technique is used in the popular scanner Nmap used to infer remotely the
computer uptime :

Uptime 26.271 days (since Wed Jun 27 09:31:13 2007)

Once Nmap has determined the OS type by the mean of TCP/IP fingerprint-
ing, it computes the uptime using the following formula:

timestamp

numincbysec
= uptimeinsec

This is the simplified version that does not take into account the TSval wrap
around. The OS specific increment used in our algorithm are those found in
Nmap source code.

4 Counting Hosts using Timestamp

The timestamp value can be represented as a linear function:

timestamp = numincbysec * sec + in

where numincbysec is the slope and is dependent of the OS and in is the
initial timestamp value. The initial number is zero for every OS type except
windows. in is random for Windows computer, thus the uptime cannot be
computed remotely.

To overcome this limitation and have a technique that can be used pas-
sively we do not rely on the OS fingerprinting to infer the increments or the
initial timestamp value. Instead we use two values of the timestamp, to solve
the following equation:

ts1− ts2 = A ∗ (s1− s2)⇔ A =
ts1− ts2

s1− s2

3



where ts1 and ts2 are the two timestamp gathered at time t1 and t2.
This allows us to determine passively the increment.

The NAT counting algorithm is based on the idea that two hosts behind a
NAT have a distinctive timestamp because they can’t have the same uptime
unless they have been booted within the same millisecond which is more than
unlikely. Intuitively the counting algorithm works as follows: For each host
a set of linear functions is stored. Every packet timestamp is verified against
this set of linear functions. If it belongs to one of the already known functions
then the host is already counted. If not then a new host is detected.
This algorithm is efficient in term of space complexity because it requires only
to keep two points for each real host. It is also efficient in time complexity
because it only works with simple linear function. As additional benefit,
knowing the increment for a given host allows to infer it type of OS. This
allows to fingerprint computer that are hidden behind a NAT.
Experiment has shown that it works against standard router such as Netgear
one but also against OpenBSD scrub NAT function because this function
does not modify the timestamp option.

5 Additional Uses

Another application of the method is to combine it with other active fin-
gerprinting methods. This is useful to defeat anti-fingerprint, by comparing
the computed increment with the OS type detected by the fingerprint active
method. Of course the method can be used by it self as a fingerprint method
but it is less accurate since it can only infer the type of OS.

PAT (Port Address Translation) is used to access a service which is lo-
cated on computer behind a NAT. Once again our method can help to deter-
mine if a PAT mechanism is used because the linear function associated to
the PAT will not be consistent with the router one. Moreover if the PAT is
used for round robin purpose then it became possible to detect it and infer
the number of hosts used in the round robin. There will be one linear func-
tion for each host that participate to the round robin. To the best of our
knowledge this is the only technique usable to determine how many hosts are
involved in a PAT round robin.

4



6 Limitation and Evasion

The main limitation of the technique is the fact that by default Windows
system does not use the timestamp option when they establish a connection
[8]. This limitation only affects the passive analysis because if the active
probe uses the timestamp option, then the Windows system response will also
contains the timestamp option. As explained in the introduction, the host
counting technique based on the IPID works with Windows system, hence
the combination of the two techniques allows to overcome this limitation.
To be complete on the subject, it seems that Windows 95, 98, Me TCP/IP
stack does not implement the timestamp option. The other limitation is due
to the network latency: it may introduce a bias in the measurement of the
time interval between two packets. Fortunately the increment value used by
the different class of OS are sufficiently different to allow the implementation
to have a window of acceptance large enough to overcome this limitation.
Experiment confirms that on a production network, this measure is sufficient.
There is mainly three methods to evade this technique:

1. Disabling the TCP timestamp option. This is not a viable option since
it is needed on high speed network in particular to prevent sequence
wrap around problem.

2. Add a rewriting mechanism to the NAT computer in order to normalize
packets timestamp.

3. Change the OS implementation so it use a random increment value for
its timestamp.

7 Conclusion

In this paper we have introduced a new method to count hosts hidden behind
NAT. This method uses the TCP timestamp option. We also have presented
how this method can be used to infers the OS type of each computer hidden
behind a given NAT and how to use it to improve active fingerprinting. A
future work is to see how this method can be combined to other passive
fingerprint methods to improve their accuracy.

5



References

[1] A Technique for Counting NATted Hosts, 2002.

[2] antirez. dumbscan. Technical report, Bugtrack, Dec 1998.

[3] R. Beverly. A robust classifier for passive tcp/ip fingerprinting. In Passive
and Active Network Measurement, volume 3015 of LNCS, pages 158–167.
Springer-Verlag, 2004.

[4] K. Egevang, Cray Communications, and P. Francis. Rfc 1631 : The ip
network address translator (nat). Technical report, IETF, 1994.

[5] Fyodor. Nmap : free open source utility for network exploration or secu-
rity auditing.

[6] Jacobson, Braden, and Borman. rfc1323: Tcp extensions for high perfor-
mance. Technical report, IETF, 1992.

[7] B. McDanel. Tcp timestamping - obtaining system uptime remotely.
Technical report, Bugtrack, Mar 2001.

[8] microsoft. Tcp extensions for high performance in windows. knowledge
base.

[9] Michal Zalewski. P0f2: “dr. jekyll had something to hyde” passive os
fingerprinting tool. Web, 2006.

6


