
Using Strategy Objectives for Network Security Analysis

Elie Bursztein1 and John C. Mitchell2

{elie|mitchell}@cs.stanford.edu
1 Stanford University and LSV, ENS Cachan, INRIA, CNRS

2 Stanford University

Abstract. The anticipation game framework is an extension of attack graphs
based on game theory. It is used to anticipate and analyze intruder and admin-
istrator concurrent interactions with the network. Like attack-graph-based model
checking, the goal of an anticipation game is to prove that a safety property holds.
However, expressing intruder goal as a safety property is tedious and error prone
on large networks because it assumes that the analyst has prior and complete
knowledge of critical network services and knows what the attacker targets will
be.
In this paper we address this issue by introducing a new kind of goal called “strat-
egy objectives”. Strategy objectives mix logical constraints and numerical ones.
In order to achieve these strategy objectives, we have extended the anticipation
games framework with cost and reward. Additionally, this extension allows us to
take into account the financial dimension of attacks during the analysis. We prove
that finding the optimal strategy is decidable and only requires linear space. Fi-
nally we show that anticipation games with strategy objectives can be used in
practice even on large networks by evaluating the performance of our prototype.

1 Introduction

With the increasing size and complexity of networks, attack modeling is now
recognized as a key part of constructing an accurate network security for intru-
sion analysis, and prevention. Anticipation games (AG) [4] are an evolution of
attack graphs based on game theory. More specifically, an anticipation game is a
simultaneous game played between a network attacker and a network defender
on a game-board consisting of a dependency graph. The dependency graph de-
fines which services exist on the network and how they are related. The moves
of the game do not change this dependency graph, but they do change the at-
tributes, such as the compromise attribute which is associated with the nodes to
reflect player’s actions.

Typically an anticipation game is used to analyze how the network will be
impacted by various attacks and how administrator actions can counter them.
Using anticipation games instead of attack graphs offers the following advan-
tages:

First it allows us to model the concurrent interaction of the intruder and
the administrator with the network. For example, it is possible to model a case
where the intruder is trying to exploit a vulnerability while the administrator is
trying to patch it. Secondly, player interactions with the network are described
by timed rules that use preconditions and postconditions written in a modal
logic. Describing the model only with the network initial state and a set of rules
relieves the security analyst from the tedious and error prone burden of explic-
itly describing each network state and the transitions between them. In AG the
model-checking algorithm uses the set of rules to infer automatically every tran-
sition and network state reachable from the network’s initial state [3]. As a result
it is possible to express very large and complex models in a very compact form,
which is handy while working on large networks and complex attacks.Thirdly,
the use of timed rules allows us to model the temporal dimension of the attack.
It captures the fact that each interaction with the network requires a different
time. For instance, developing and launching an exploit is somewhat slower
than downloading and launching a publicly available one. Modeling the time
also models the so called ”element of surprise” [7], which occurs when one
player takes the other by surprise because he is faster. For example, when the
administrator is patching a service she can be taken by surprise by the intruder
if the intruder is able to exploit the vulnerability before the patch is complete.
Finally, since AG have been designed for network security analysis, they take
into account network topological information such as dependency between net-
work services, which allow them to model collateral effects. For example when
a DNS server is unavailable due to a DDOS then by collateral effect, the web
server is merely available because browsers can’t perform DNS resolution.

Although using AG to analyze attacks provides a substantial improvement
over standard attack graphs, there is still one side of attack modeling that re-
mains tedious and error-prone: defining the analysis goal. So far as standard
attack graph[16], the current AG analysis goal is to prove that a given safety
property holds for a given model. However, network analysis makes the expres-
sion of security goal in term of reachability very hard because it is difficult to
assert which services/hosts should be considered as a primary security objective,
especially when working on large networks. Therefore in this paper we intro-
duce a new kind of analysis goal called ”Strategy objectives”. Intuitively the
idea is to combine a symbolic objective (logical formula) with numerical ones
(time, cost, and reward). The logical formula is used to select all the plays that
are valid strategies, and the numerical objectives are used to refine the analysis
by selecting, among all of these possible strategies, the one that is the most rel-
evant to the player according to his quantitative objectives. To the best of our

knowledge this is the first time that symbolic and numerical objectives have been
combined to express security goals. Note that being able to select the most rel-
evant candidate is a central issue in network security as the number of possible
candidates (e.g different attacks) to achieve a given goal is usually very large.
The expressiveness offered by strategy objectives allows anticipation games to
be used to answer a brand new range of question that more closely match ad-
ministrator and security analysts needs. For example, using strategy objectives it
is possible to answer the question: ”What is the most effective patching strategy
in terms of cost or time ?”. Finally the introduction of action costs and rewards
takes into account the financial dimension of attacks which is a central concern
of network attacks. Taking into account action cost allows us to reason about
the costs required to launch an attack, the loss induced by it, and the investment
required to prevent it.

Our main contribution is the extension of AG with strategy objectives. This
extension allows the analysis to answer key network security questions and to
capture the financial dimension of the attack.
As far as we know, our extension the AG framework is the first attack model that
covers both the financial and temporal aspects of attacks. Additionally we prove
that the model-checking of AG with strategy objectives is decidable, and that de-
ciding if a play is a valid strategy can be done in linear time. We also prove that
using strategy objectives instead of a safety property adds only a linear space
complexity to the analysis. The evaluation performed with our prototype shows
that in practice this framework can be used to find strategy for large networks
(Thousands of nodes). This evaluation also demonstrates that practical results
are consistent with the theoretical bounds we have proven.

The reminder of this paper is organized as follows. In Sect. 2, we will survey
related work. In Sect. 3, we recall what an anticipation game is and present how
we have extended it to take into account cost and reward. We also present the
game example that is used as a guideline for the rest of the paper. Sect. 4 details
how strategies objectives are expressed and contains the strategy decidability
and space complexity proofs. In sect. 5, we evaluate the impact of using strategy
in term of speed and memory with our prototype. We show that our experiments
are consistent with the theory and that strategies can be used in practice.

2 Related Work

Model checking for attack graphs was introduced by Ammann and Ritchey
[16]. It is used to harden security [13]. Various methods have been proposed for
finding attack paths, i.e., sequences of exploit state transitions, including logic-

based approaches [17] and graph-based approaches [12].Research has also been
conducted on formal languages to describe actions and states in attack graphs
[5].Anticipation games are based on timed automata, timed games, and timed
alternating-time temporal logic (TATL) [8], a timed extension to alternating-
time Kripke structures and temporal logic (ATL) [1]. The TATL framework
was specifically introduced in [7]. The notion of cost for attack appears in [6].
Mahimkar and Shmatikov have used the game theory to model denial of service
in [11] The use of games for network security was introduced by Lye and Wing
[10]. The Anticipation Game framework was introduced in [4]. A dedicated
model-checker called NetQi [3] has been developed to accommodate anticipa-
tion game specificities.

3 Anticipation Games with Cost and Rewards

This section briefly recalls what an anticipation game (AG) is and explains the
extension made to introduce strategy in the model. Intuitively, an AG can be
represented as a graph. Each node of the graph describes the network state at
any given moment; e.g, each state describes which services are compromised at
this moment. The transitions represent the set of actions that both players, the
administrator and the intruder, can perform to alter the network state. For exam-
ple, an edge may represent the action of removing a service from the vulnerable
set by patching it.

3.1 Network State

The network state is represented by a graph called a Dependency Graph (DG)
and a finite set of states. DGs are meant to remain fixed over time and describe
the relation between services and files. The figure 1 presents the DG used as an
example in this paper. DG vertices are services and files present on the network
and the set of directed edges is used to express the set of dependencies between
them. In the example below, the direct edge that links the vertex Email server
(5) to the vertex User database (6) is used to denote that the email server de-
pends on the user database to identify its clients.

The set of variables (figure 1) is used to model information that does evolve
over time. Intuitively this set describes which services and files are currently
public, vulnerable, compromised, and so on. More formally, letA be a finite set
of so-called atomic propositions A1, . . . , An, . . . , denoting each base property.
Thus each atomic proposition is true or false for each DG vertex. The complete
initial mapping used in the example is detailed in figure 1. This mapping indi-
cates that the email server and the web server need to be public, are vulnerable,

States 1 2 3 4 5 6
ρ(Vuln) ⊥ ⊥ ⊥ > > ⊥
ρ(Public) ⊥ ⊥ ⊥ > > ⊥
ρ(Compr) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
ρ(NeedPub) ⊥ ⊥ ⊥ > > ⊥

Fig. 1. The intial network state (left) and the dependency graph (right)

and are public because (ρ(NeedPub)), ρ(Public), and (ρ(Vuln)) return true (>).
It also indicates that no vertex is compromised as ρ(Compr) returns false (⊥)
for every vertex. Finally the set ρ(NeedPub) is used by the Unfirewall rules
to know which vertices should be made public.

3.2 Player’s Actions

To describe which actions are legal for each player a set of timed rules is as-

sociated to the AG. Each rule is of the form Pre F
∆,p,a,c−→ P where F is the

precondition, stating when the rule applies, ∆ is the amount of time needed to
fire the rule, p is the name of the player that originates the rule, a is an action
name, c is the rule cost, and P is a command, stating the effects of the rule. It
is required for the precondition F to hold not just when the rule is selected, but
during the whole time it takes the rule to actually complete (∆ time units). For
example consider the following rule :

Pre V uln ∧ Public (30,I,Compromise,500)−→ Compr

This says that the intruder can compromise a vertex if it is vulnerable (Vuln)
and public (Public) in 30 units of time. Compromise means here that the tar-
geted vertex will be added to the state Compr. If the intruder chooses to apply
this rule to the Email server then it is required that the preconditions are ful-
filled when he chooses to apply it but also after the 30 units of time required to
execute it because the network state might have changed during this time due to
administrator actions. For example, the administrator could firewall the targeted
vertex. In this case, the vertex is not public anymore, the intruder is taken by
surprise, and the compromise rule fails. An AG play is a path (a sequence of
action and states) ρ : s0r0s1r1... where ∀j : sj →rj sj+1, sj and s(j + 1) are
network states, and rj is the rule used to make the transition.

3.3 Extending Anticipation Game for Strategy

Using strategy and analyzing the financial dimension of the attack requires that
we extend the framework with costs and rewards. The natural way to do so is to
add a cost to rules and an a reward to each DG vertex.

Costs are added to rules because it is obvious that some actions are more
costly than others. For example, coding an exploit is more costly than using an
existing one. Similarly, rewards are bound to DG vertices because some services
and files are more valuable than others. In our example (figure 1), it is obvious
that the user database is more important than any client. Formally we have
a function Value(x) → y/y ∈ N that returns the value y associated to the
DG vertex x. Costs are naturally added to rules because a rule execution is
equivalent to a player action on the network. To take into account the fact that
not all the rules grant a reward we use two types of rules: regular rules that
have an execution cost and granting rules that have an execution cost and grant
a reward. For example if the administrator objective is to secure her network,
then firewalling a service (removing it from the Public set) will prevent it
from being compromised but it is a temporary measure, and therefore should
not grant a reward. At the opposite end of the spectrum, patching the service
(removing it from the Vuln set) is a permanent measure and grants a reward.
Note that computing the value of network assets is a topic by itself [14] and
we we assume that one of the existing methods is used to compute the rewards
associated to vertices.

3.4 Player Rules

The set of rules used for the example focuses on intrusion and is meant to be
very general. It is just meant to give a flavor of what is possible with our model.
It follows that the cost and time associated with each rule are meant to be on the
order of magnitude of what is commonly accepted, but these measures are not
necessarily completly accurate. The seven rules used in the example are shown
in Figure 2.

We take the convention that a granting rule uses the =⇒ double arrow
and that a regular rule uses the −→ single arrow. Rules Compromise
0day(1) and Compromise Public(2) say that if a vertex is vulnerable (Vuln),
public (Public) and not compromised (Compr), then it can be compromised.
The difference between the two is the time required to compromise the ser-
vice (2 or 7 units) and the cost required (20000 or 5000). The use of these two
rules allows us to express the fact that using a 0 day exploit instead of a pub-
lic exploit provides an advantage in terms of time and a disadvantage in terms
of cost. To be consistent with this idea, the administrator patch rule (7) is

1) Pre : V uln ∧ Public ∧ ¬Compr
=⇒ 2, I, Compromise 0day, 20000
Effect : Compr

2) Pre : V uln ∧ Public ∧ ¬Compr
=⇒ (7, I, Compromise public, 5000)
Effect : Compr

3) Pre : ¬Compr ∧ ♦Compr
=⇒ (4, I, Compromise backward, 5000)
Effect : Compr

4) Pre : Compr ∧ ♦¬Compr
=⇒ (4, I, Compromise forward, 5000)
Effect : ♦Compr

5) Pre Public ∧ V uln
−→ (1, A, Firewall, 10000)
Effect ¬Public

6) Pre ¬Public ∧ ¬V uln ∧NeedPub
−→ (1, A, UnFirewall,0)
Effect Public

7) Pre V uln ∧ ¬Compr
−→ (3, A, Patch, 500)
Effect ¬V uln ∧ ¬Compr

Fig. 2. Set of rules

slower than the compromise 0day rule and faster than the compromise
public one. These three rules model the windows of vulnerability [9]. The
rule Compromise backward says that the intruder can take advantage of a
dependency relation to compromise a vertex that depends on a compromised
one. The modal operator [2] ♦ allows preconditions and postconditions to speak
about vertice successor. For example ♦Compr means ”there exists a succes-
sor that is compromised”. This operator is used to model attacks that exploit
trust relationships and collateral effects such as the attack where a compro-
mised DNS server is used to redirect clients to spoofed sites. Similarly the rule
Compromise forward (4) says that the intruder can take advantage of a
dependency relation to compromise the successor of a compromised vertex. In
our DG example (figure 1) if the intruder is able to compromise the intranet
server, he can look in its configuration files to steal database credentials. The rule
Firewall (5) says that if a service is vulnerable (Vuln) and Public (Public)
it can be firewalled. The cost of the rule is very high (10000) compared to the
patch rule cost (500) because firewalling a public service will indeed prevent the
intruder to access it but also forbids legitimate access. Thus this action induces
an activity disturbance and a possible financial loss. Notice the −→ arrow of
this rule that denotes that no reward is granted. Finally the rule Unfirewall
(6) is used to make public services that are not vulnerable and need to be public
(NeedPub).

3.5 Play example

The play used as an example (figure 3) is an intruder strategy that aimed at
compromising the network. Due to space constraints, rules name have been trun-
cated. Column Ti stands for time, Pl for players, Act for action, Ta for target,

S for successor node, Pa for payoff and C for cost. Furthermore, I is for in-
truder and A is for admin. Every strategy presented in this paper is the output
result of NetQi using the DG, the initial mapping set, and the set of rules pre-
sented above, along with various strategy objectives. Even if this example seems
simple, it still cannot be analyzed by hand because this game configuration leads
to 4011 distinct plays.

Ti Pl Act Rule Ta S Pa C
0 I choose Comp 0 Day 4 ⊥ - -
0 A choose Firewall 4 ⊥ - -
1 A execute Firewall 4 ⊥ 0 10000
1 A choose Patch 4 ⊥ - -
2 I fail Comp 0 Day 4 ⊥ 0 20000
2 I choose Comp 0 Day 5 ⊥ - -
4 I execute Comp 0 Day 5 ⊥ 31 40000
4 I choose Comp For 5 6 - -
4 A execute Patch 4 ⊥ 21 10500
4 A choose UnFirewall 4 ⊥ - -
5 A execute UnFirewall 4 ⊥ 21 10500
5 A choose Patch 5 ⊥ - -
8 I execute Comp For 5 6 1382 45000
8 I choose Comp Back 2 5 - -

Ti Pl Act Rule Ta S Pa C
8 A execute Patch 5 ⊥ 52 11000

12 I fail Comp Back 2 5 1382 50000
12 I choose Comp Back 4 6 - -
16 I execute Comp Back 4 6 1403 55000
16 I choose Comp Back 1 4 - -
20 I execute Comp Back 1 4 1404 60000
20 I choose Comp Back 2 4 - -
24 I execute Comp Back 2 4 1405 65000
24 I choose Comp For 2 5 - -
28 I execute Comp For 2 5 1436 70000
28 I choose Comp Back 3 5 - -
32 I execute Comp Back 3 5 1437 75000

Fig. 3. Play example Intruder maximum payoff

The figure 3 example is read as follows: At time 0 the intruder chooses
to use an 0 day exploit against the Web server (Target 4). At the same time the
administrator starts firewalling the Web server. Because firewalling is faster than
exploiting the 0 Day vulnerability, the administrator is able to firewall the web
server before the 0day exploitation is successful (time 1). The administrator
starts to patch the web server. At time 2 the intruder is taken by surprise by
the administrator because the web server is firewalled before his exploitation
is successful, hence the rule execution fails. He chooses to try another 0day
exploit against the email server (target 5, time 2). At time 4 the administrator has
finished patching the web server and decides to unfirewall it since it is no longer
vulnerable. Meanwhile, the intruder compromises the email server and decides
to use his newly gained access to compromise the user database (target 6). At
time 5 the administrator decides to patch the email server (target 4). At time 8
the intruder has compromised the user database (target 6). At the same moment,
the administrator has finished patching the email server (node 5). Therefore at

time 12 the intruder fails to compromise the client 2 from the email server (Succ
4) because the email server is no longer vulnerable and compromised. However
the intruder still has access to the database user server (node 6) and he uses this
access to compromise the web server (time 16). From there he compromises
the client 1 (time 20) and the client 2 (time 28). He uses his access on client
2 to compromise the web server again (node 5, time 28) and finally owns the
network by compromising the client 3. This play illustrates that the interaction
between players leads to very complex plays even when the initial situation is
simple. This emphases that analyzing administrator and intruder interactions on
a real network cannot be achieved by hand.

4 Strategy objectives

In game theory, a strategy is the optimal succession of actions (plays) that a
player can perform to achieve his goal. As said previously, translating real world
network security goals into reachability properties is not expressive enough and
is also error-prone. Therefore in this section, we introduce a new kind of analysis
goal called strategy objectives that combine symbolic constraints and numeri-
cal objectives by leveraging the notion of cost and reward introduced previously.

Symbolic constraints, expressed as a CTL logical formula, are used to ex-
press which plays are acceptable strategies. Numerical objectives are used to
select among these potential candidates, the one that fulfill the most player in-
terests. To the best of our knowledge this the first time that symbolic and numer-
ical objectives have been combined to express analysis goal. Strategy objectives
allow security analysts to express naturally many network security goals. For
example it allow security analysts to express that the goal of the administrator is
to patch her network (logical formula) in minimum amount of time and for the
lowest cost possible (numerical constraints). More formally we define strategy
objectives as :

Definition 1 (Strategy objectives) A set of strategy objectives is the tuple S :
(name,P,O,R, ϕ) where name is the strategy name, P is its owner, O is the
set of numerical objectives, R is the numerical objectives priority strict order,
and ϕ is the logical formula that a play needs to satisfy to be a valid strategy.

4.1 Numerical Objectives

Numerical objectives O are assigned on play outcomes φ:

Definition 2 (Play outcomes) are the unordered set of natural numbers
φ : {payoff, cost, opayoff, ocost, time} where payoff is the player pay-
off , cost is the player cost , opayoff is the player opponent payoff, ocost
is the opponent cost, and time is the duration of the play.

The player P payoff for the play ρ is the sum of all the rewards granted by
the successful execution of his granting rules. A rule reward is the value of the
DG vertex targeted by the rule execution. The players P cost for ρ is the sum of
all executed rule costs whether they are successful or not, because regardless of
its success the player has invested the same amount of resource in it. A strategy
numerical objective is either the maximization or the minimization of one of
these play outcome. For instance, an administrator might want to find a patching
strategy that minimizes the cost and the time.

4.2 Symbolic Constraints

Symbolic constraints are used to express which plays can be considered valid
strategies. In the patch strategy example, valid plays are those in which every
vulnerable service is patched. An additional constraint can be that no services
are compromised. This constraint has two possible interpretations that lead to
two very different results: first, it can mean that at the end of the play no service
is compromised but that at some point a service could have been compromised
and restored. Secondly, it can mean that no service is ever compromised during
the play. The difference between the two interpretations is that with the first
interpretation, having a service compromised for a brief moment is acceptable,
whereas with the second interpretation, it is not.

To express the second type of constraint the CTL [2] operator � is needed.
This operator is used to express the fact that a constraint needs to be true for
every state of the play. We also use the ♦ operator to express the fact that a
constraint needs to be true at some point. This operator is used, for example
to express information leak strategy where at some point a service was com-
promised. Thus the strategy formula is expressed in the following fragment of
CTL:

ϕ ::= A Atomic proposition
| ¬ϕ
| ϕ ∧ ϕ
| ∀A
| ∃A
| �ϕ
| ♦

We take the convention that if a constraint is specified without the ♦ and the
� operator then this constraint has to be true only on the last state of the play.
Patching strategy symbolic constraints are used to ensure that no vertex is ever
compromised (belongs to the set Compr) and that every vertex is not vulnerable
at the end of the play are written: �¬Compr ∧ ¬V uln in our CTL fragment.

4.3 Dominant Strategy

The natural question that arises is what class of strategy objectives should be
considered for network security. A naive idea would be to consider the class of
objectives that minimizes/maximizes player cost/reward only and ensures by a
set of constraints that the player goals are fulfilled. The following patching strat-
egy objectives minimize the cost and ensures that no vertex is ever compromised
and that every vertex is not vulnerable at the end of the play is:

S : (patch,Admin,MIN(Cost), Cost,�¬Compr ∧ ¬V uln))

However these strategy objectives lead to an incorrect strategy because the
cost is minimal when the opponent makes ”mistakes” :

Ti Pl Act Rule Ta S Pa C
0 I choose Comp Public 4 ⊥ - -
0 A choose Patch 5 ⊥ - -
3 A execute Patch 5 ⊥ 31 500
3 A choose Patch 4 ⊥ - -
6 A execute Patch 4 ⊥ 52 1000
7 I fail Comp Public 4 ⊥ 0 5000

The intruder could have been more effective. For example, he could have
used an 0 day exploit at the beginning. Thus, a more interesting class of strate-
gies to consider for network security is the ones that minimize/maximize the
cost/reward and are successful whatever the opponent does. These strategies are
the best set of actions against the worst case. Thus, in our patching strategy ex-
ample, the administrator wants to have the least costly patching strategy that is
effective even against the worst case attack. This class of strategies is computed
by adding objectives that maximize/minimize the opponent’s cost/reward. They
are commonly called strictly dominant strategies [15]. Dominant strategies are
effective against the worst case but also every less effective case. In other words,
when a player has a strictly dominant strategy and he performs it, he is able to
fulfill his objective regardless of what his opponent does. From the network se-
curity perspective, it means that when the administrator has a dominant strategy

for a given set of goals, whatever her opponent do, this strategy will ensure
her that she will always accomplish her objective. In the example, a dominant
strategy exists for the administrator.When used, it ensures that the administrator,
regardless of the intruder actions, will be able to patch the two vulnerable ser-
vices before any service is compromised.Note that in the general case dominant
strategies do not always exist.

4.4 Complexity

We now study the decidability of finding the best strategy for a given set of
strategy objectives. The key issue is that plays can be infinite. However, they
are ultimately periodic paths because an AG is finite and therefore even when a
game has an infinite play it is possible to decide which play is the best for a given
set of objectives. To decide so, two things must be known: the play outcome and
if the play satisfies the logic formula used to express the symbolic constraints.
For the play outcome we have the following result:

Lemma 1. An infinite play outcome can be computed by examining a short
finite prefix.

For formula satisfiability we have the following result:

Lemma 2. For an infinite play the decidability of objectives formula satisfac-
tion can be reduced to verifying the formula on a short finite prefix.

This leads us to the central theorem for decidability:

Theorem 1 Deciding if a play is the one that fulfills the most strategy objectives
is decidable for any play by looking at a finite number of states.

Moreover we can prove that deciding if a play satisfies the most strategy
objectives can be done in polynomial time:

Theorem 2 Deciding if a play satisfies the most strategy objectives can be de-
cided in polynomial time O(s× |ϕ|) where s is the number of states in the finite
prefix and ϕ is the formula to verify.

Ultimately we have the general decidability theorem:

Theorem 3 (Decidability) Finding the strategy that fulfills the most strategy
objectives over an anticipation game is decidable.

A key property for implementation is that the memory required to find a
strategy for a given set of objectives is linear:

Theorem 4 Memory space complexity worst case is: WC = Set × V × R ×
(S + 1) Where Set is the finite memory space required to hold sets mapping
values, V is the number of vertices of the dependency graph, R is the number of
rules and S is the number of strategies researched.

5 Evaluation

In order to evaluate that AG can be used in practice, we have conducted a set
of evalutions with our prototype on a standard Intel 2.9GHz core 2 Linux. Each
benchmark was run three times and the reported time is the mean. Two sets of
benchmarks have been conducted. The first set was used to determine if the AG
framework is usable in practice. The second set was used to measure the impact
of strategy on the analyzer performance and ensure that they are consistent with
theoretical bounds.

The first set of benchmarks was done by running the analyzer against a
large example. This example uses the set of rules presented in the Sec. 3.4, an
initial random network state, and looks for the intrusion and defense strategy
presented in Sec 4. The random initial state is composed of 5200 nodes, 27000
dependencies and 3 random vulnerabilities. Each of the 200 server nodes has 10
random dependencies and each of the 5000 client nodes has 5 random depen-
dencies. To ensure that the generated initial state is not a degenerate case, we
used 10 different initial states. Our prototype has the same performance regard-
less of the initial states used. In order to deal with such a large example, our
analyzer uses numerous optimization tricks, including a static analysis of the
dependency graph shape and a static analysis of the rules set based on the shape
of the symbolic constraints [3]. Benchmark results presented in figure 4 show
that, in practice AG can be used to analyze a new situation even for a complex
network in a matter of seconds.

Nb Nodes Nb Dep Strategy type Time
5200 27000 Defense Exact 2.4 sec
5200 27000 Intrusion Approximate 55 sec

Fig. 4. Analyzer performance benchmark

We evaluate the performance impact of using strategy objectives instead
of verifying a security property by conducting two types of benchmark. The

first type was designed to measure the impact of strategy on analyzer speed
and the second to measure memory usage. In order to have the most accu-
rate evaluation possible, all analyzer optimizations were disabled. The game
we choose as a baseline for our benchmark is an expanded version of the ex-
ample presented in this paper with ten additional clients. Without optimiza-
tion, adding clients increases drastically the interleaving generated by the rules
compromise forward and compromise backward. For this speed per-
formance benchmark, we used as a baseline the time required by the analyzer
to run every possible play generated by the game without strategy. Then we ran
the analyzer with an increasing number of strategy requests. The requested num-
ber of strategies ranges between 0 and 100. Every strategy symbolic objectives
contains a � constraint to ensure that we are in the worst case possible: Our
prototype has to evaluate the symbolic constraints satisfaction on every state of
every play. Experimental results show that that the time requested to analyze the
game grows linearly in the number of strategies, which is consistent with theo-
rem 2. Secondly, we have used the memory profiler massif from the valgrind
tool suite to verify that the memory needed by the analyzer grows linearly in the
number of strategies as proved in theorem 4.

6 Conclusion

In this paper we have introduced strategies for anticipation games. We have
shown that using strategy objectives as analysis goals allow us to find answers to
key security questions such as ”What is the best patching strategy in term of time
and cost”. We have described how our extension takes into account the financial
dimension of the network security, making the AG the first framework that deals
with time and the financial dimension of attack at the same time. We have proved
that finding the strategy that fulfills the most strategy objectives is decidable and
that it only requires a linear memory space. Finally, we have demonstrated the
suitability of AG with strategies for practical uses by fully implementing AG
with strategies in our prototype . Future work involves extending strategies with
non-determinism to model attackers with various levels of knowledge and skill.

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM,
49(5):672–713, 2002.

2. B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and P. Schnoebelen.
Systems and Software Verification. Model-Checking Techniques and Tools. Springer, 2001.

3. E. Bursztein. NetQi: A model checker for anticipation game. In M. Kim and
M. Viswanathan, editors, Proceedings of the 6th International Symposium on Automated

Technology for Verification and Analysis (ATVA’08), Lecture Notes in Computer Science,
Seoul, Korea, Oct. 2008. Springer.

4. E. Bursztein and J. Goubault-Larrecq. A logical framework for evaluating network resilience
against faults and attacks. In 12th annual Asian Computing Science Conference (ASIAN),
pages 212–227. Springer-Verlag, Dec. 2007.

5. F. Cuppens and R. Ortalo. Lambda: A language to model a database for detection of at-
tacks. In RAID ’00: Proceedings of the Third International Workshop on Recent Advances
in Intrusion Detection, pages 197–216, London, UK, 2000. Springer-Verlag.

6. M. Dacier, Y. Deswarte, and M. Kaaniche. Models and tools for quantitative assessment of
operational security. In 12th International Information Security Conference, pages 177–186,
May 1996.

7. L. de Alfaro, M. Faella, T. Henzinger, R. Majumdar, and M. Stoelinga. The element of
surprise in timed games. In 14th International Conference on Concurrency Theory, volume
2761 of LNCS, pages 144–158. Springer-Verlag, 2003.

8. T. Henzinger and V. Prabhu. Timed alternating-time temporal logic. In Formats 06, volume
4202, pages 1–18. Springer-Verlag, 2006.

9. R. Lippmann, S. Webster, and D. Stetson. The effect of identifying vulnerabilities and patch-
ing software on the utility of network intrusion detection. In RAID ’02: Proceedings of
the 5th International Workshop on Recent Advances in Intrusion Detection, pages 307–326.
Springer-Verlag, Oct 2002.

10. K.-w. Lye and J. M. Wing. Game strategies in network security. Int. J. Inf. Sec., 4(1-2):71–
86, 2005.

11. A. Mahimkar and V. Shmatikov. Game-based analysis of denial-of-service prevention pro-
tocols. In 18th IEEE Computer Security Foundations Workshop (CSFW), Aix-en-Provence,
France, June 2005, pp. 287-301. IEEE Computer Society, 2005., pages 287–301. IEEE Com-
puter Society, Jun 2005.

12. S. Noel and S. Jajodia. Managing attack graph complexity through visual hierarchical ag-
gregation. In VizSEC/DMSEC ’04: Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security, pages 109–118, New York, NY, USA, 2004. ACM
Press.

13. S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs. Efficient minimum-cost network hardening
via exploit dependency graphs. In 19th Annual Computer Security Applications Conference,
pages 86–95, Dec. 2003.

14. J. Pamula, S. Jajodia, P. Ammann, and V. Swarup. A weakest-adversary security metric for
network configuration security analysis. In QoP ’06: Proceedings of the 2nd ACM workshop
on Quality of protection, pages 31–38, New York, NY, USA, 2006. ACM Press.

15. E. Rasmusen. Games and Information. Blackwell publishing, 2007.
16. R. W. Ritchey and P. Ammann. Using model checking to analyze network vulnerabilities. In

SP ’00: Proceedings of the 2000 IEEE Symposium on Security and Privacy, pages 156–165,
Washington, DC, USA, 2000. IEEE Computer Society.

17. O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated generation and
analysis of attack graphs. In SP ’02: Proceedings of the 2002 IEEE Symposium on Security
and Privacy, pages 273 – 284, Washington, DC, USA, 2002. IEEE Computer Society.

