Using Strategy Objectives for Network Security Analysis

Elie Bursztein

Stanford University / LSV, Ens-Cachan

Inscrypt 2009

Work purpose Analyzing and anticipating computer networks attacks.

Network complexity: The Pentagon Case

Huge network

- 15 000 LAN Networks
- 7 000 000 Computers

Huge Security problems

- Flash Drive banned due to a virus spread (Nov 2008).
- 1500 computers taken (Jun 2007)

Attack Complexity

Using Strategy Objectives for Network Sec

- ► 2004 Bouygues Telecom: 2 servers downs → 3 200 000 cellphones down
- ► 2005 Japan Mitsubishi: 1 computer infected → 40 MB of confidential reports leaked on a P2P network
- ► 2007 Apple: 1 computer in the production line infected → 150 000 ipods infected by the trojan RavMonE.exe

Network Security

Attacks

Game Strategy Automated Analysis Conclusion

Outline

Network Security Attacks

Game

Strategy

Automated Analysis

Conclusion

Attacks

Vulnerabilities

- A vulnerability is a software bug that can be exploited by attacker to gain privilege.
- An exploit is the piece of software that takes advantage of a software bug.
- A Oday exploit is an exploit for an undisclosed vulnerability.

Attacks

Vulnerabilities as Step stones

- Large networks may suffer multiple vulnerabilities
- Patches and counter-measures need to be prioritized
- A minor vulnerability can turn into a major hole when used as a step-stone

Attacks

Illustration of a Complex attack

Attacks

The Need for Automation

Attack analysis can't be done by hand: network and attack are just too complex and big for that.

We need models and tools for this !

Attacks

Attack Graph Frameworks

- 1998: Use of model-checking for host security [RS98]
- 2000: Use of model-cheking for network [RA00]
- 2004: First complete framework that constructs the attack scenario [SW04]
- ▶ 2005: Mulval [Ou05] a framework based on Datalog.
- 2006: NetSpa [ALI06] a framework that scale up to 50 000 nodes.

Attacks

Time is the Essence

Network security is a race between Intruder and Administrator. Windows of vulnerability

Attacks

The Need for Time

Without time meaningless actions are allowed in the model.

- Administrator can patch 1000 services instantly.
- Intruder can compromise 1000 services before the administrator have a chance to react.

Without time concurrent actions can't be modeled. Ex: Administrator may patch a service while Intruder tries to exploit it.

Attacks

Time and Game

Model Timed automaton game [AFHMS].

Property

Property can be written in Timed Alternating-Time Temporal Logic [AHK06].

Network Security

Game Strategy Automated Analysis Conclusion

Attacks

Collateral Effects

Structure Rules

Network Security

Game Structure Rules

Strategy

Automated Analysis

Conclusion

Structure Rules

Dual layer structure

The Upper-layer is the timed automaton game, the Lower-layer represents the network state.

Structure Rules

Dual layer structure

The Upper-layer is the timed automaton game, the Lower-layer represents the network state.

Structure Rules

Lower-layer: the network state

The lower layer is composed of

- The dependency graph
- A set of states (atomic proposition)

Structure Rules

Web Service Receipt

To build a web service you need:

A HTTP frontend to serve the data

Structure Rules

Web Service Receipt

To build a web service you need:

- A HTTP frontend to serve the data
- A SQL backend to store the data

Structure Rules

Web Service Receipt

To build a web service you need:

- A HTTP frontend to serve the data
- A SQL backend to store the data
- A way to administrate the service

Structure Rules

Web Service Receipt

To build a web service you need:

- A HTTP frontend to serve the data
- A SQL backend to store the data
- A way to administrate the service

Using Strategy Objectives for Network Sec

Structure Rules

The Dependency graph

Structure Rules

Set of States

	SSH	SQL	HTTP1	HTTP2
Vulnerable	T		1	
Compromised	\perp	\perp	\perp	\perp

Structure Rules

Rule Syntax

• φ_{pre} : Preconditions.

Rule syntax:

 $\begin{array}{rl} \mathsf{\Gamma}: & \mathbf{Pre} \ \varphi_{\textit{pre}} \\ & \longrightarrow \Delta, \textit{p}, \textit{a}, \textit{c} \\ & \mathbf{Effect} \ \varphi_{\textit{eff}} \end{array}$

Structure Rules

Rule Syntax

Rule syntax:

 $\begin{array}{rl} \mbox{\boldmathΓ}: & \mbox{\bf Pre} \ \varphi_{\mbox{\it pre}} \\ & \longrightarrow \Delta, \mbox{\it p}, \mbox{\it a}, \mbox{\it c} \\ & \mbox{\bf Effect} \ \varphi_{\mbox{\it eff}} \end{array}$

- φ_{pre} : Preconditions.
- Δ: Time required to complete the action.

Structure Rules

Rule Syntax

Rule syntax:

- φ_{pre} : Preconditions.
- Δ: Time required to complete the action.
- p: The player that executes the rule.

Structure Rules

Rule Syntax

Rule syntax:

- φ_{pre} : Preconditions.
- Δ: Time required to complete the action.
- p: The player that executes the rule.
- ► a: Rule name.

Structure Rules

Rule Syntax

Rule syntax:

- φ_{pre} : Preconditions.
- Δ: Time required to complete the action.
- p: The player that executes the rule.
- ► a: Rule name.
- ► c: Rule cost.

Structure Rules

Rule Syntax

Rule syntax:

- φ_{pre} : Preconditions.
- Δ: Time required to complete the action.
- p: The player that executes the rule.
- ► a: Rule name.
- ► c: Rule cost.
- ▶ φ_{eff}: Effects.

Structure Rules

Rule Syntax

Rule syntax:

- φ_{pre} : Preconditions.
- Δ: Time required to complete the action.
- p: The player that executes the rule.
- ► a: Rule name.
- ► c: Rule cost.
- ▶ φ_{eff}: Effects.

Structure Rules

Rules Syntax

Structure Rules

◊ Vulnerable: One of the successors is vulnerable.

Structure Rules

Rule Example

 $\label{eq:rescale} \begin{array}{l} \mbox{Γ}: \mbox{ Pre Vulnerable} \\ \longrightarrow 4, \mbox{A}, \mbox{Patch}, 500 \\ \mbox{ Effect \neg Vulnerable $\land \neg Compromise} \end{array}$

Structure Rules

The Element of Surprise

if the opponent alters the service state *during the player rule execution then the player is taken by suprise!*

Structure Rules

Decidability

Decidability

Model-checking TATL over anticipation games is EXPTIME-Complete [BGL,ASIA'07].

What is a strategy ? Using strategy Play Example

Outline

Network Security

Game

Strategy What is a strategy ? Using strategy Play Example

Automated Analysis

Conclusion

Elie Bursztein

What is a strategy ? Using strategy Play Example

From counter-example to strategy

An attack is a counter-example.

What is a strategy ? Using strategy Play Example

From counter-example to strategy

- An attack is a counter-example.
- Typically you end-up with many counter-examples.

What is a strategy ? Using strategy Play Example

From counter-example to strategy

- An attack is a counter-example.
- Typically you end-up with many counter-examples.

The problem

Which counter-example should the administrator look at first ?

What is a strategy ? Using strategy Play Example

From counter-example to strategy

- An attack is a counter-example.
- Typically you end-up with many counter-examples.

The problem

Which counter-example should the administrator look at first ?

- Which attack is the most devastating ?
- What service to patch first ?

What is a strategy ? Using strategy Play Example

Costs and Rewards

To find the most meaningful counter-example we need some additional informations.

What is a strategy ? Using strategy Play Example

Costs and Rewards

To find the most meaningful counter-example we need some additional informations.

Cost: Each action has a cost.

What is a strategy ? Using strategy Play Example

Costs and Rewards

To find the most meaningful counter-example we need some additional informations.

- Cost: Each action has a cost.
- Reward: Each network asset has a value.

What is a strategy ? Using strategy Play Example

Costs and Rewards

To find the most meaningful counter-example we need some additional informations.

- Cost: Each action has a cost.
- Reward: Each network asset has a value.

$$\mathcal{O} ::= O \qquad \text{Objective } \in \phi \\ | \quad \mathcal{O} \land \mathcal{O} \\ | \quad MAX(O) \qquad \text{maximize the value} \\ | \quad MIN(O) \qquad \text{minimize the value} \\ | \quad O < x \qquad x \in \mathbb{N} \\ | \quad O > x \qquad x \in \mathbb{N} \end{cases}$$

What is a strategy ? Using strategy Play Example

Relation between Cost and Time

Assumption

The faster an action is, the more costly it is.

Real world examples of this assumption:

- Exploit: Oday versus Public exploit.
- Response team: 24/24h versus 8h /day

What is a strategy ? Using strategy Play Example

Strategy objectives are a tuple:

$$\mathcal{S} = (Na, Pl, Ob, Or, Co)$$

- Na: Strategy name
- PI: The player
- Ob: Numerical objectives
- Or: Strict preference order
- Co: Constraints.

Example $S = (Patch, A, Min(Cost) \land Max(OCost))$

, OCost > Cost, $\blacksquare \neg Compromised$)

What is a strategy ? Using strategy Play Example

Computing Assets value

- Using the same value for each asset.
- Assigning value by hand.
- Computing automatically the value with a ranking algorithm [EB,INSCRYPT'08].

What is a strategy ? Using strategy Play Example

Which Objectives to choose ?

- Minimizing cost (patch)
- Maximizing reward (attack)

What is a strategy ? Using strategy Play Example

Which Objectives to choose ?

- Minimizing cost (patch)
- Maximizing reward (attack)

Wrong answer !

Player performs the best when his opponent makes mistakes.

Game theory classical optimal criterion such as Nash equilibrium and Pareto optimality are not applicable.

What is a strategy ? Using strategy Play Example

Dominant Strategy

The notion of dominant strategy was informally introduced in biology [H67] in 1967.

(Strictly) Dominant Strategy

The (strictly) dominant strategy is the player strategy that beats the maximum number of (every) opponent strategies.

What is a strategy ? Using strategy Play Example

The Lower Layer

What is a strategy ? Using strategy Play Example

The Lower Layer

What is a strategy ? Using strategy Play Example

Intruder Rules

 $\label{eq:rescaled} \begin{array}{ll} \mbox{Γ}: & \mbox{Pre Vulnerable} \land \neg Compromise \\ & \longrightarrow 2, \mbox{I}, \mbox{$Exploit 0day, 20000$} \\ & \mbox{$Effect Compromise$} \end{array}$

What is a strategy ? Using strategy Play Example

Intruder Rules

- $\label{eq:gamma-composition} \begin{array}{ll} \mbox{Γ}: & \mbox{Pre Vulnerable} \land \neg \mbox{Compromise} \\ & \longrightarrow 2, \mbox{I}, \mbox{$Exploit 0day, 20000$} \\ & \mbox{Effect Compromise} \end{array}$
- $\label{eq:rescaled} \begin{array}{ll} \mbox{Γ}: & \mbox{Pre Vulnerable} \land \neg Compromise \\ & \longrightarrow 10, \mbox{I}, \mbox{$Exploit$ Public, 500} \\ & \mbox{$Effect$ Compromise$} \end{array}$

What is a strategy ? Using strategy Play Example

Intruder Rules

- $\label{eq:rescaled} \begin{array}{ll} \mbox{Γ}: & \mbox{Pre Vulnerable} \land \neg Compromise \\ & \longrightarrow 2, \mbox{I}, \mbox{$Exploit 0day, 20000$} \\ & \mbox{$Effect Compromise$} \end{array}$
- $\label{eq:rescaled} \begin{array}{ll} \Gamma : & \textbf{Pre } \textit{Vulnerable} \land \neg\textit{Compromise} \\ & \longrightarrow 10, \mbox{ I, Exploit Public, 500} \\ & \textbf{Effect } \textit{Compromise} \end{array}$
- $\label{eq:generalized} \begin{array}{ll} \Gamma : & \textbf{Pre} \neg \textit{Compromise} \land \diamondsuit \textit{Compromised} \\ & \longrightarrow 1, \mbox{ I, Propagation, 5000} \\ & \textbf{Effect} \textit{ Compromise} \end{array}$

What is a strategy ? Using strategy Play Example

Intruder Rules

- $\label{eq:rescaled} \begin{array}{ll} \mbox{Γ}: & \mbox{Pre Vulnerable} \land \neg Compromise \\ & \longrightarrow 2, \mbox{I}, \mbox{$Exploit 0day, 20000$} \\ & \mbox{$Effect Compromise$} \end{array}$
- $\label{eq:rescaled} \begin{array}{ll} \Gamma : & \textbf{Pre } \textit{Vulnerable} \land \neg\textit{Compromise} \\ & \longrightarrow 10, \mbox{ I, Exploit Public, 500} \\ & \textbf{Effect } \textit{Compromise} \end{array}$
- $\label{eq:generalized} \begin{array}{ll} \Gamma : & \textbf{Pre} \neg \textit{Compromise} \land \diamondsuit \textit{Compromised} \\ & \longrightarrow 1, \mbox{ I, Propagation, 5000} \\ & \textbf{Effect} \textit{ Compromise} \end{array}$

What is a strategy ? Using strategy Play Example

Administrator Rules

 $\label{eq:rescale} \begin{array}{l} \mbox{Γ}: \mbox{ Pre Vulnerable} \\ \longrightarrow 4, \mbox{A}, \mbox{Patch}, 500 \\ \mbox{ Effect \neg Vulnerable $\land \neg Compromise} \end{array}$

What is a strategy ? Using strategy Play Example

$S = (Attack, I, MAX(Reward) \land Max(OCost), OCost > Reward, (OCost), OCost > Reward, (OCost))$

Т	P	Action	Rule	Target	Succ	Payoff	Cost
0	Α	choose	Patch	SSH	\perp	-	-
0	I	choose	Exp 0 Day	SSH	\perp	-	-

Т	Ρ	Action	Rule	Target	Succ	Payoff	Cost
	Α	In Progress	Patch	SSH	1	-	-
2	Ι	execute	Exp 0 Day	SSH	1	1	20000

Т	Ρ	Action	Rule	Target	Succ	Payoff	Cost
	Α	In Progress	Patch	SSH	\perp	-	-
2	Ι	choose	propagation	SQL	SSH	-	-

Τ	Ρ	Action	Rule	Target	Succ	Payoff	Cost
	Α	In Progress	Patch	SSH	1	-	-
3	I	execute	propagation	SQL	SSH	101	25000

Т	Ρ	Action	Rule	Target	Succ	Payoff	Cost
	Α	In Progress	Patch	SSH	\perp	-	-
3	Ι	choose	propagation	HTTP1	SQL	-	-

Т	Ρ	Action	Rule	Target	Succ	Payoff	Cost
	Α	In Progress	Patch	SSH	1	-	-
4	Ι	execute	propagation	HTTP1	SQL	111	30000

Т	P	Action	Rule	Target	Succ	Payoff	Cost
	Α	In Progress	Patch	SSH	\perp	-	-
4	Ι	choose	propagation	HTTP2	SQL	-	-

Т	Р	Action	Rule	Target	Succ	Payoff	Cost
4	Α	execute	Patch	SSH	SQL	1	500
	Ι	InProgress	propagation	HTTP2	SQL	-	-

What is a strategy ? Using strategy Play Example

Extending the model

We extended the anticipation game framework [EB,FAST'08] in order to model

- Multiples network cooperation
- Cost over the time (penalty)
- Timeline of events

Network Security

Game

Strategy

Automated Analysis

Conclusion
The Tool

We create an implementation in C (\approx 6500 lines) of the anticipation game framework called NetQi [EB,ATVA'08].

HomePage

Elie Bursztein

Using Strategy Objectives for Network Sec

Nb Nodes	Nb Dep	Strategy	type	Time
5200	27000	Defense	Exact	2.4 sec
5200	27000	Intrusion	Approximate	55 sec

Network Security

Game

Strategy

Automated Analysis

Conclusion

In this work we have

- Developed the notion of strategy
- Show how strategy allow to select the most interesting play
- Implemented the model in order to show the effectiveness of the approach.

- Finding network key services.
- Using dynamic costs and rewards.
- Modeling various classes of attackers.